online degree bounded steiner

ONLINE DEGREE-BOUNDED STEINER Sina Dehghani Saeed Seddighin - PowerPoint PPT Presentation

ONLINE DEGREE-BOUNDED STEINER Sina Dehghani Saeed Seddighin NETWORK DESIGN Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph . 2 1 A sequence of demands ( , ) arriving


  1. ONLINE DEGREE-BOUNDED STEINER Sina Dehghani Saeed Seddighin NETWORK DESIGN Ali Shafahi Fall 2015

  2. ONLINE STEINER FOREST PROBLEM οƒ˜ An initially given graph 𝐻. 𝑑 2 𝑑 1 οƒ˜ A sequence of demands ( 𝑑 𝑗 , 𝑒 𝑗 ) arriving one-by-one. 𝑒 2 𝑒 1 οƒ˜ Buy new edges to connect demands.

  3. DEGREE-BOUNDED STEINER FOREST οƒ˜ There is a given bound 𝑐 𝑀 for every vertex 𝑀 . 𝑑 2 𝑑 1 𝑒𝑓𝑕 𝐼 (𝑀) οƒ˜ degree violation ≔ . 𝑐 𝑀 οƒ˜ Find a Steiner forest 𝐼 minimizing the degree violations. 𝑒 2 𝑒 1

  4. PREVIOUS OFFLINE WORK οƒ˜ Degree-bounded network design: Problem Paper Result Degree-bounded Spanning tree FR ’90 𝑃(log π‘œ) -approximation Degree-bounded Steiner tree AKR ’91 𝑃(log π‘œ) -approximation maximum degree ≀ 𝑐 βˆ— + 1 Degree-bounded Steiner forest FR ’94

  5. PREVIOUS OFFLINE WORK οƒ˜ Edge-weighted degree-bounded variant: Problem Paper Result EW DB Steiner forest MRSRRH. ’98 βŸ¨π‘ƒ log π‘œ), 𝑃(log π‘œ ⟩ -approx. min weight, max deg ≀ 𝑐 βˆ— + 2 EW DB Spanning tree G ’06 min weight, max deg ≀ 𝑐 βˆ— + 1 EW DB Spanning tree LS β€˜07

  6. PREVIOUS ONLINE WORK οƒ˜ Online weighted Steiner network (no degree bound) Problem Paper Result Online edge-weighted Steiner tree IW β€˜91 𝑃 log π‘œ -competitive Online edge-weighted Steiner forest AAB β€˜96 𝑃(log π‘œ) -competitive

  7. OUR CONTRIBUTION οƒ˜ Online degree-bounded Steiner network: Problem Result Online degree-bounded Steiner forest 𝑃(log π‘œ) -competitive greedy algorithm Online degree-bounded Steiner tree Ξ©(log π‘œ) lower bound Online edge-weighted degree-bounded Steiner tree Ω π‘œ lower bound Online degree-bounded group Steiner tree Ω(π‘œ) lower bound for det. algorithms.

  8. LINEAR PROGRAM βˆ€π‘“ ∈ 𝐹: 𝑦 𝑓 = 1 if and only if 𝑓 is selected. 𝑻 be the collection of separating sets of demands. OMPC has an O(log 2 π‘œ) -competitive fractional solution, but rounding that is hard! min 𝛽 βˆ€π‘€ ∈ π‘Š 𝑦 𝑓 ≀ 𝛽. 𝑐 𝑀 limits degree violations. π‘“βˆˆπœ€ 𝑀 ensures connectivity. βˆ€π‘‡ ∈ 𝑻 𝑦 𝑓 β‰₯ 1 π‘“βˆˆπœ€ 𝑇 π’š 𝑓 , 𝛽 ∈ ℝ +

  9. REDUCTION TO UNIFORM DEGREE BOUNDS οƒ˜ Replace 𝑀 with 𝑀 1 … 𝑀 𝑐𝑀 . 𝑀 1 οƒ˜ Connect each 𝑀 𝑗 to all neighbors of 𝑀 . 𝑀 2 𝑀 π‘‚π‘“π‘—π‘•β„Ž(𝑀) οƒ˜ Set all degree bounds to 1 . 𝑀 𝑐 𝑀 οƒ˜ Uniformly distribute edges of πœ€ 𝐼 (𝑀) among 𝑀 𝑗 ’s . οƒ˜ The degree violation remains almost the same.

  10. GREEDY ALGORITHM 𝑑 𝑗 𝑑 𝑗 𝑑 𝑗 𝑒 𝑗 𝑒 𝑗 𝑒 𝑗

  11. GREEDY ALGORITHM 𝑑 οƒ˜ Definitions: ο‚§ Let 𝐼 denote the online output of the previous step. ο‚§ For an ( s, 𝑒 )-path 𝑄 the extension part is P βˆ— = {𝑓|𝑓 ∈ 𝑄, 𝑓 βˆ‰ 𝐼} . ο‚§ The load of 𝑄 βˆ— is π‘š 𝐼 𝑄 βˆ— = max π‘€βˆˆπ‘„ βˆ— deg 𝐼 (𝑀) . 𝑄 βˆ— 𝑄 οƒ˜ Algorithm: Can be done 1. Initiate 𝐼 = 𝜚 . polynomially. 2. For every new demand ( 𝑑 𝑗 , 𝑒 𝑗 ): βˆ— . 1. Find the path 𝑄 𝑗 with the minimum π‘š 𝐼 𝑄 𝑗 βˆ— . 2. 𝐼 = 𝐼 βˆͺ 𝑄 𝑗 𝑒

  12. ANALYSIS Ξ“ 𝑠 οƒ˜ Let Ξ“ 𝑠 be the set of vertices with deg 𝐼 𝑀 β‰₯ 𝑠 . βˆ— is at least 𝑠 . οƒ˜ Let 𝐸 𝑠 be demands for which π‘š 𝐼 𝑄 𝑗 Remark : π›₯(𝑠) is a cut-set for 𝑑 𝑗 and 𝑒 𝑗 for every 𝑗 ∈ 𝐸 𝑠 . οƒ˜ Let 𝐷𝐷(𝑠) denote the number of connected components of 𝐻\π›₯ 𝑠 that have at least one endpoint of demand i ∈ 𝐸(𝑠) . Lemma: βˆ€π‘ : 𝐷𝐷 𝑠 β‰₯ 𝐸 𝑠 + 1 . 𝑑 𝑗 𝑒 𝑗 𝐷𝐷 𝑠 Remark: βˆ€r: π‘ƒπ‘„π‘ˆ β‰₯ |Ξ“ 𝑠 | .

  13. ANALYSIS 𝑑 π‘˜ οƒ˜ π›₯(𝑠) ’s have a hierarchical order, i.e. π›₯ 𝑠 + 1 βŠ† π›₯(𝑠) . 𝑑 𝑗 Ξ“(Ξ”) οƒ˜ Every demand 𝑗 ∈ 𝐸(𝑠) copies some vertices to upper level. 𝑒 π‘˜ 𝑒 𝑗 οƒ˜ Out of all copies, at most 2(π›₯ 𝑠 βˆ’ 1) are for internal edges . Ξ“(𝑠) Ξ“(2) 𝛦 Lemma: βˆ€π‘ : 𝐸 𝑠 βˆ’ 2(π›₯ 𝑠 βˆ’ 1) . β‰₯ 𝑒=𝑠+1 Ξ“(1) π›₯ 𝑒

  14. ANALYSIS Lemma: For every sequence of integers 𝑏 1 β‰₯ 𝑏 2 β‰₯ β‹― β‰₯ 𝑏 Ξ” > 0 Ξ” π‘˜=𝑗 𝑏 π‘˜ Ξ” 2 log 𝑏 1 . max 𝑗 { } β‰₯ 𝑏 𝑗 οƒ˜ Partition to log 𝑏 1 groups. 𝑏 1 𝑏 2 … β‰₯ 𝑏 𝑗 … … β‰₯ … 𝑏 Ξ” β‰₯ β‰₯ β‰₯ Ξ” οƒ˜ One group has at least log 𝑏 1 numbers. 2 𝑙 2 log 𝑏 1 2 π‘™βˆ’1 2 0

  15. ANALYSIS ο‚§ Putting all together : βˆ€π‘ : π‘ƒπ‘„π‘ˆ β‰₯ 𝐷𝐷 𝑠 𝐷𝐷 𝑠 Ξ“ 𝑠 . β‡’ π‘ƒπ‘„π‘ˆ β‰₯ max Ξ“ 𝑠 𝑠 + 1 . 𝐷𝐷 𝑠 β‰₯ 𝐸 𝑠 Ξ” βˆ’ 2(Ξ“ 𝑠 βˆ’ 1) . 𝐸 𝑠 β‰₯ 𝑒=𝑠+1 Ξ“ 𝑒 ο‚§ Setting 𝑏 𝑗 = Ξ“ 𝑗 and using the lemma: Ξ” 𝑒=𝑠 Ξ“ 𝑠 βˆ’π‘ƒ Ξ“ 𝑠 +1 Ξ” Ξ” π‘ƒπ‘„π‘ˆ β‰₯ max β‰₯ 2 log Ξ“ 1 βˆ’ 𝑃 1 ∈ Ξ©( log π‘œ ) Ξ“ 𝑠 𝑠

  16. LOWER BOUND Theorem: Every (randomized) algorithm for online degree-bounded Steiner tree is 𝛻(π‘šπ‘π‘• π‘œ) -competitive. 𝑠𝑝𝑝𝑒 𝑨 𝑗 𝑨 𝑨 2 π‘š 𝑨 1 π‘˜ … … … … … 𝑦 1 𝑦 𝑗,π‘˜ 𝑦 2π‘š 2 π‘œ ∈ 𝑃 2 (2π‘š) 𝑐 𝑀 = π‘œ 𝑗𝑔 𝑀 = 𝑠𝑝𝑝𝑒 2 𝑃. 𝑋.

  17. LOWER BOUND ο‚§ Theorem: Let π‘ƒπ‘„π‘ˆ 𝑐 denote the minimum weight of a Steiner tree with maximum degree 𝑐 . Then for every (randomized) algorithm 𝐡 for online edge-weighted degree-bounded Steiner tree either ο‚§ 𝐹 max deg 𝐡 𝑀 β‰₯ Ξ© π‘œ . 𝑐 or ο‚§ 𝐹 π‘₯π‘“π‘—π‘•β„Žπ‘’ 𝐡 𝑐 . β‰₯ Ξ© π‘œ . π‘ƒπ‘„π‘ˆ 𝑠𝑝𝑝𝑒 π‘œ = 2𝑙 + 1 𝑐 = 3 𝑀 1 𝑀 2 𝑀 𝑗 𝑀 𝑗+1 𝑀 𝑙 … … π‘₯π‘“π‘—π‘•β„Žπ‘’ 𝐡 = π‘œ 𝑗+1 deg 𝐡 𝑠𝑝𝑝𝑒 = 𝑗 π‘œ 2 π‘œ 𝑙 π‘œ 𝑗 π‘œ 𝑗+1 π‘œ 𝑗 … … π‘œ π‘˜ ∈ 𝑃(π‘œ 𝑗 ) π‘ƒπ‘„π‘ˆ 3 = 𝑀 𝑙+1 𝑀 2𝑙 𝑀 𝑙+2 𝑀 𝑙+𝑗 𝑀 𝑙+𝑗+1 π‘˜=1

  18. LOWER BOUND Theorem: Every deterministic algorithm 𝐡 for online degree-bounded group Steiner tree is 𝛻(π‘œ) -competitive. All degree bounds are 1. 𝑀 1 𝑀 3 𝑀 2 𝑀 π‘œβˆ’2 𝑀 π‘œβˆ’1 deg 𝐡 𝑠𝑝𝑝𝑒 = π‘œ βˆ’ 1 . 𝑠𝑝𝑝𝑒

  19. OPEN PROBLEMS οƒ˜ The main open problem: ο‚§ Online edge-weighted degree-bounded Steiner forest, when the weights are polynomial to π‘œ . οƒ˜ Other degree-bounded variants (with or without weights): ο‚§ Online group Steiner tree. ο‚§ Online survivable network design.

  20. Thank you

Recommend


More recommend