on uniform definability of types over finite sets
play

On Uniform Definability of Types over Finite Sets Vincent Guingona - PowerPoint PPT Presentation

On Uniform Definability of Types over Finite Sets Vincent Guingona University of Maryland, College Park March 26, 2011 For the 2011 ASL Annual North American Meeting, Berkeley, California Outline 1 Introduction 2 UDTFS Introduction to UDTFS


  1. On Uniform Definability of Types over Finite Sets Vincent Guingona University of Maryland, College Park March 26, 2011 For the 2011 ASL Annual North American Meeting, Berkeley, California

  2. Outline 1 Introduction 2 UDTFS Introduction to UDTFS dp-Minimality and UDTFS Other Formulas and Theories with UDTFS The UDTFS Conjecture UDTFS Rank 3 Future Work Kueker Conjecture 4 Bibliography Vincent Guingona (UMCP) UDTFS March 26, 2011

  3. Introduction Types For this talk, we work in a complete, first-order theory T with infinite models and let C be a large saturated model of T . Vincent Guingona (UMCP) UDTFS March 26, 2011

  4. Introduction Types For this talk, we work in a complete, first-order theory T with infinite models and let C be a large saturated model of T . Fix a partitioned formula ϕ ( x ; y ) and a set B ⊆ C lg ( y ) . Vincent Guingona (UMCP) UDTFS March 26, 2011

  5. Introduction Types For this talk, we work in a complete, first-order theory T with infinite models and let C be a large saturated model of T . Fix a partitioned formula ϕ ( x ; y ) and a set B ⊆ C lg ( y ) . Definition. A ϕ -type p over B is a maximal collection of consistent formulas of the form ± ϕ ( x ; b ) for various b ∈ B . Vincent Guingona (UMCP) UDTFS March 26, 2011

  6. Introduction Types For this talk, we work in a complete, first-order theory T with infinite models and let C be a large saturated model of T . Fix a partitioned formula ϕ ( x ; y ) and a set B ⊆ C lg ( y ) . Definition. A ϕ -type p over B is a maximal collection of consistent formulas of the form ± ϕ ( x ; b ) for various b ∈ B . Definition. The ϕ -Stone Space over B , denoted S ϕ ( B ), is the set of all ϕ -types over B . Vincent Guingona (UMCP) UDTFS March 26, 2011

  7. Introduction Stability and Dependence Definition. We say a partitioned formula ϕ ( x ; y ) is stable if there do not exist � a i : i < ω � and � b j : j < ω � such that, for all i , j < ω | = ϕ ( a i ; b j ) if and only if i < j . Vincent Guingona (UMCP) UDTFS March 26, 2011

  8. Introduction Stability and Dependence Definition. We say a partitioned formula ϕ ( x ; y ) is stable if there do not exist � a i : i < ω � and � b j : j < ω � such that, for all i , j < ω | = ϕ ( a i ; b j ) if and only if i < j . Definition. We say a partitioned formula ϕ ( x ; y ) is dependent (or sometimes NIP ) if there do not exist � a s : s ∈ P ( ω ) � and � b j : j < ω � such that, for all s ∈ P ( ω ) , j < ω | = ϕ ( a s ; b j ) if and only if j ∈ s . Vincent Guingona (UMCP) UDTFS March 26, 2011

  9. Introduction Definability of Types A main property of stability, which we wish to generalize to dependence, is definability of types. Definition. Fix a formula ϕ ( x ; y ), a ϕ -type p , and a parameter-definable formula ψ ( y ). We say that ψ defines p if, for all b ∈ dom ( p ), we have that ϕ ( x ; b ) ∈ p ( x ) if and only if | = ψ ( b ) . Vincent Guingona (UMCP) UDTFS March 26, 2011

  10. Introduction Definability of Types A main property of stability, which we wish to generalize to dependence, is definability of types. Definition. Fix a formula ϕ ( x ; y ), a ϕ -type p , and a parameter-definable formula ψ ( y ). We say that ψ defines p if, for all b ∈ dom ( p ), we have that ϕ ( x ; b ) ∈ p ( x ) if and only if | = ψ ( b ) . Theorem (Shelah). A partitioned formula ϕ ( x ; y ) is stable if and only if there exists formulas ψ k ( y ; z 1 , ..., z n ) for k < K (finite) such that, for all non-empty sets B ⊆ C lg ( y ) and all p ∈ S ϕ ( B ), there exists c 1 , ..., c n ∈ B and k < K such that, ψ k ( y ; c 1 , ..., c n ) defines p . Vincent Guingona (UMCP) UDTFS March 26, 2011

  11. Introduction Counting Type Spaces Corollary. If ϕ ( x ; y ) is stable, then there exists K , n < ω such that, for any non-empty set B ⊆ C lg ( y ) , | S ϕ ( B ) | ≤ K · | B | n . Vincent Guingona (UMCP) UDTFS March 26, 2011

  12. Introduction Counting Type Spaces Corollary. If ϕ ( x ; y ) is stable, then there exists K , n < ω such that, for any non-empty set B ⊆ C lg ( y ) , | S ϕ ( B ) | ≤ K · | B | n . Theorem (Sauer’s Lemma). If ϕ ( x ; y ) is dependent, then there exists K , n < ω such that, for any non-empty FINITE set B ⊆ C lg ( y ) , | S ϕ ( B ) | ≤ K · | B | n . Vincent Guingona (UMCP) UDTFS March 26, 2011

  13. Introduction Counting Type Spaces Corollary. If ϕ ( x ; y ) is stable, then there exists K , n < ω such that, for any non-empty set B ⊆ C lg ( y ) , | S ϕ ( B ) | ≤ K · | B | n . Theorem (Sauer’s Lemma). If ϕ ( x ; y ) is dependent, then there exists K , n < ω such that, for any non-empty FINITE set B ⊆ C lg ( y ) , | S ϕ ( B ) | ≤ K · | B | n . Definition. We say that a dependent formula ϕ has VC-density ℓ if ℓ is the infimum of all n ∈ R + such that the condition in the above theorem holds. Vincent Guingona (UMCP) UDTFS March 26, 2011

  14. UDTFS Introduction Uniform Definability of Types over Finite Sets Definition. We say a partitioned formula ϕ ( x ; y ) has UDTFS if there exists formulas ψ k ( y ; z 1 , ..., z n ) for k < K such that, for all non-empty FINITE sets B ⊆ C lg ( y ) and all p ∈ S ϕ ( B ), there exists c 1 , ..., c n ∈ B and k < K such that ψ k ( y ; c 1 , ..., c n ) defines p . A theory T has UDTFS if all partitioned formulas do. Vincent Guingona (UMCP) UDTFS March 26, 2011

  15. UDTFS Introduction Uniform Definability of Types over Finite Sets Definition. We say a partitioned formula ϕ ( x ; y ) has UDTFS if there exists formulas ψ k ( y ; z 1 , ..., z n ) for k < K such that, for all non-empty FINITE sets B ⊆ C lg ( y ) and all p ∈ S ϕ ( B ), there exists c 1 , ..., c n ∈ B and k < K such that ψ k ( y ; c 1 , ..., c n ) defines p . A theory T has UDTFS if all partitioned formulas do. Definition. We will say that a formula ϕ with UDTFS has UDTFS rank n if n is minimal such. Vincent Guingona (UMCP) UDTFS March 26, 2011

  16. UDTFS Introduction Facts about UDTFS Facts. 1 If ϕ ( x ; y ) is stable, then ϕ has UDTFS. 2 If ϕ ( x ; y ) has UDTFS rank n , then the VC-density of ϕ is ≤ n . 3 If ϕ ( x ; y ) has UDTFS, then ϕ is dependent. Vincent Guingona (UMCP) UDTFS March 26, 2011

  17. UDTFS Introduction Facts about UDTFS Facts. 1 If ϕ ( x ; y ) is stable, then ϕ has UDTFS. 2 If ϕ ( x ; y ) has UDTFS rank n , then the VC-density of ϕ is ≤ n . 3 If ϕ ( x ; y ) has UDTFS, then ϕ is dependent. Theorem (Johnson, Laskowski). If T is o-minimal, then T has UDTFS. Vincent Guingona (UMCP) UDTFS March 26, 2011

  18. UDTFS Introduction Facts about UDTFS Facts. 1 If ϕ ( x ; y ) is stable, then ϕ has UDTFS. 2 If ϕ ( x ; y ) has UDTFS rank n , then the VC-density of ϕ is ≤ n . 3 If ϕ ( x ; y ) has UDTFS, then ϕ is dependent. Theorem (Johnson, Laskowski). If T is o-minimal, then T has UDTFS. stable ⇓ o-minimal ⇒ UDTFS ⇒ dependent Vincent Guingona (UMCP) UDTFS March 26, 2011

  19. UDTFS dp-Minimality dp-Minimal Theories Definition. A theory T is dp-minimal if there do not exist ϕ ( x ; y ), ψ ( x ; z ), � b i : i < ω � , and � c j : j < ω � such that, for all i 0 , j 0 < ω , the type {¬ ϕ ( x ; b i 0 ) , ¬ ψ ( x ; c j 0 ) } ∪ { ϕ ( x ; b i ) : i � = i 0 } ∪ { ψ ( x ; c j ) : j � = j 0 } . is consistent. Vincent Guingona (UMCP) UDTFS March 26, 2011

  20. UDTFS dp-Minimality Examples of dp-Minimal Theories Examples. The following theories are dp-minimal: 1 Any o-minimal theory or weakly o-minimal theory, 2 Th ( Z ; <, +), 3 Th ( Q p ; + , · , | , 0 , 1) (where x | y iff. v p ( x ) ≤ v p ( y )), 4 Algebraically closed valued fields. 5 In general, any VC-minimal theory is dp-minimal. 6 Any theory with VC-density ≤ 1 is dp-minimal. Vincent Guingona (UMCP) UDTFS March 26, 2011

  21. UDTFS dp-Minimality dp-Minimal Theories have UDTFS Theorem (G.). If T is dp-minimal, then T has UDTFS. Vincent Guingona (UMCP) UDTFS March 26, 2011

  22. UDTFS dp-Minimality dp-Minimal Theories have UDTFS Theorem (G.). If T is dp-minimal, then T has UDTFS. Theorem (G.). If ϕ ( x ; y ) and N < ω are such that, for all B ⊆ C lg ( y ) with | B | = N , | S ϕ ( B ) | ≤ N ( N + 1) / 2, then ϕ has UDTFS (in particular if ϕ has VC-density < 2, then ϕ has UDTFS). Vincent Guingona (UMCP) UDTFS March 26, 2011

  23. UDTFS Misc UDTFS Valued Fields and UDTFS Theorem (G.). If ( K , k , Γ) is a Henselian valued field that has elimination of field quantifiers in the Denef-Pas language, Th ( k ) has UDTFS, and Th (Γ) has UDTFS, then the full theory in the Denef-Pas language has UDTFS. Vincent Guingona (UMCP) UDTFS March 26, 2011

  24. UDTFS Misc UDTFS Valued Fields and UDTFS Theorem (G.). If ( K , k , Γ) is a Henselian valued field that has elimination of field quantifiers in the Denef-Pas language, Th ( k ) has UDTFS, and Th (Γ) has UDTFS, then the full theory in the Denef-Pas language has UDTFS. Examples. The theories of the following structures in the Denef-Pas language have UDTFS: 1 Q p , 2 R (( t )), 3 C (( t )), 4 C (( t Q )). Vincent Guingona (UMCP) UDTFS March 26, 2011

  25. UDTFS Misc UDTFS Maximum Formulas have UDTFS Definition. A partitioned formula ϕ ( x ; y ) is maximum of dimension d if, for all finite B ⊆ C lg ( y ) , � | B | � � = � � � � S ϕ ( B ) . i i ≤ d Vincent Guingona (UMCP) UDTFS March 26, 2011

Recommend


More recommend