On the Smallest Enclosing Information Disk Frank Nielsen 1 Richard Nock 2 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory Frank.Nielsen@acm.org 2 University of Antilles-Guyanne DSI-GRIMAAG Richard.Nock@martinique.univ-ag.fr August 2006 F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Smallest Enclosing Balls Problem Given S = { s 1 , ..., s n } , compute a simplified description, called the center , that fits well S (i.e., summarizes S ). Two optimization criteria: Find a center c ∗ which minimizes the average M IN A VG distortion w.r.t S : c ∗ = argmin c � i d ( c , s i ) . Find a center c ∗ which minimizes the maximal M IN M AX distortion w.r.t S : c ∗ = argmin c max i d ( c , s i ) . Investigated in Applied Mathematics: Computational geometry (1-center problem), Computational statistics (1-point estimator), Machine learning (1-class classification), F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Smallest Enclosing Balls in Computational Geometry Distortion measure d ( · , · ) is the geometric distance : Euclidean distance L 2 . c ∗ is the circumcenter of S for M IN M AX , Squared Euclidean distance L 2 2 . c ∗ is the centroid of S for M IN A VG ( → k -means), Euclidean distance L 2 . c ∗ is the Fermat-Weber point for M IN A VG . Centroid Circumcenter Fermat-Weber M IN A VG L 2 M IN M AX L 2 M IN A VG L 2 2 F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
M IN M AX in Computational Geometry (MINIBALL) M IN M AX point set Smallest Enclosing Ball [NN’04] Pioneered by Sylvester (1857), Unique circumcenter c ∗ (radius r ∗ ), LP-type, linear-time randomized algorithm (fixed dimension d ), Weakly polynomial. Efficient SOCP numerical solver, Fast combinatorial heuristics ( d ≥ 1000). M IN M AX ball set F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Distortions: Bregman Divergences Definition Bregman divergences are parameterized ( F ) families of distortions. Let F : X − → R , such that F is strictly convex and differentiable on int ( X ) , for a convex domain X ⊆ R d . Bregman divergence D F : D F ( x , y ) = F ( x ) − F ( y ) − � x − y , ∇ F ( y ) � . ∇ F : gradient operator of F �· , ·� : Inner product (dot product) ( → D F is the tail of a Taylor expansion of F ) F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Visualizing F and D F F ( · ) D F ( x , y ) � x − y , ∇ F ( y ) � y x D F ( x , y ) = F ( x ) − F ( y ) − � x − y , ∇ F ( y ) � . ( → D F is the a truncated Taylor expansion of F ) F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Bregman Balls (Information Balls) Euclidean Ball: B c , r = { x ∈ X : � x − c � 2 2 ≤ r } 2 : Bregman divergence F ( x ) = � d ( r : squared radius. L 2 i = 1 x 2 i ) Theorem [BMDG’04] The M IN A VG Ball for Bregman divergences is the centroid . F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Two types of Bregman balls First-type: B c , r = { x ∈ X : D F ( c , x ) ≤ r } , Second-type: B ′ c , r = { x ∈ X : D F ( x , c ) ≤ r } Lemma The smallest enclosing Bregman balls B c ∗ , r ∗ and B ′ c ∗ , r ∗ of S are unique. − → Consider first-type Bregman balls. (The second-type is obtained as a first-type ball on the dual divergence D F ∗ using the Legendre-Fenchel transformation.) F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Applications of Bregman Balls Circumcenters of the smallest enclosing Bregman balls encode: Euclidean squared distance. The closest point to a set of points. d ( q i − p i ) 2 = || p || 2 + || q || 2 − 2 � p , q � . � D F ( p , q ) = i = 1 Itakura-Saito divergence. The closest (sound) signal to a set of signals (speech recognition). d d ( p i − log p i � � D F ( p , q ) = − 1 ) , [ ← F ( x ) = − log x i ] q i q i i = 1 i = 1 Kullback-Leibler. The closest distribution to a set of distributions (density estimation). d d p i log p i � � D F ( p , q ) = − p i + q i , [ F ( x ) = − x i log x i ] q i i = 1 i = 1 F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Information Disks Problem Given a set S = { s 1 , ..., s n } of n 2D vector points, compute the M IN M AX center : c ∗ = argmin c max i d ( c , s i ) . handle geometric points for various distortions, handle parametric distributions ( e.g. , Normal distributions are parameterized by ( µ, σ ) ). F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Information Disk is LP-type Monotonicity. For any F and G such that F ⊆ G ⊆ X , r ∗ ( F ) ≤ r ∗ ( G ) . Locality. For any F and G such that F ⊆ G ⊆ X with r ∗ ( F ) = r ∗ ( G ) , and any point p ∈ X , r ∗ ( G ) < r ∗ ( G ∪ { p } ) → r ∗ ( F ) < r ∗ ( F ∪ { p } ) . M INI I NFO B ALL ( S = { p 1 , ..., p n } , B ): ⊳ Initially B = ∅ . Returns B ∗ = ( c ∗ , r ∗ ) ⊲ IF |S ∪ B| ≤ 3 RETURN B =S OLVE I NFO B ASIS ( S ∪ B ) ELSE ⊳ Select at random p ∈ S ⊲ B ∗ =M INI I NFO B ALL ( S\{ p } , B ) IF p �∈ B ∗ ⊳ Then add p to the basis ⊲ M INI I NFO B ALL ( S\{ p } , B ∪ { p } ) F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Computing basis (S OLVE I NFO B ASIS ) Lemma The first-type Bregman bisector Bisector ( p , q ) = { c ∈ X | D F ( c , p ) = D F ( c , q ) } is linear. This is a linear equation in c (an hyperplane ). Bisector Bisector ( p , q ) = { x | � x , d pq � + k pq = 0 } with d pq = ∇ F ( p ) − ∇ F ( q ) a vector, and k pq = F ( p ) − F ( q ) + � q , ∇ F ( q ) � − � p , ∇ F ( p ) � a constant (Itakura-Saito divergence) F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Computing basis (S OLVE I NFO B ASIS ) Basis 3 : The circumcenter is the trisector. (intersection of 3 linear bisectors, enough to consider any two of them). c ∗ = l 12 × l 13 = l 12 × l 23 = l 13 × l 23 , l ij : projective point associated to the linear bisector Bisector ( p i , p j ) ( × : cross-product) F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Computing basis (S OLVE I NFO B ASIS ) Basis 2 : Either minimize D F ( c , p ) s.t. c ∗ ∈ Bisector ( p , q ) , or better perform a logarithmic search on λ ∈ [ 0 , 1 ] s. t. r λ = ∇ F − 1 (( 1 − λ ) ∇ F ( p ) + λ ∇ F ( q )) is on the geodesic of pq ( ∇ F − 1 : reciprocal gradient). F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Live Demo http://www.csl.sony.co.jp/person/nielsen/ BregmanBall/MINIBALL/ F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Statistical application example Univariate Normal law distribution: 2 π exp ( − ( x − µ ) 2 1 N ( x | µ, σ ) = 2 σ 2 ) . √ σ Consider the Kullback-Leibler divergence of two distributions: x f ( x ) log f ( x ) � KL ( f , g ) = g ( x ) . Canonical form of an exponential family : 1 N ( x | µ, σ ) = 2 π Z ( θ ) exp {� θ , f ( x ) �} with: √ 2 θ 1 exp {− θ 2 Z ( θ ) = σ exp { µ 2 � − 1 2 σ 2 } = 4 θ 1 } , 2 f ( x ) = [ x 2 x ] T : sufficient statistics , θ = [ − 1 µ σ 2 ] T : natural parameters . 2 σ 2 F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Kullback-Leibler of parametric exponential family is a Bregman divergence for F = log Z . KL ( θ p || θ q ) = D F ( θ p , θ q ) = � ( θ p − θ q ) , θ p [ f ] � + log Z ( θ q ) Z ( θ p ) � µ 2 x 2 � � � p + σ 2 Z ( θ p ) exp {� θ p , f ( x ) �} � x p θ p [ f ] = = x � Z ( θ p ) exp {� θ p , f ( x ) �} µ p x Bisector � ( θ p − θ q ) , θ c [ f ] � + log Z ( θ p ) Z ( θ q ) = 0 . 1D Gaussian distribution: change variables ( µ, σ ) → ( µ 2 + σ 2 , µ ) = ( x , y ) (with x > y > 0). y 2 x − y 2 exp { � It comes Z ( x , y ) = 2 ( x − y 2 ) } , y 2 x − y 2 + � log Z ( x , y ) = log 2 ( x − y 2 ) and y 2 y 3 1 ∇ F ( x , y ) = ( 2 ( x − y 2 ) − ( x − y 2 ) 2 ) . 2 ( x − y 2 ) , F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Statistical application example (cont’d) M IN M AX : ( µ ∗ , σ ∗ ) ≃ ( 2 . 67446 , 1 . 08313 ) and r ∗ ≃ 0 . 801357, M IN A VG : ( µ ∗ ′ , σ ∗ ′ ) = ( 2 . 40909 , 1 . 10782 ) . � � σ 2 σ i − 1 + ( µ j − µ i ) 2 j + 2 log σ j Note that KL ( N i , N j ) = 1 i . 2 σ 2 σ 2 j F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Java Applet online: www.csl.sony.co.jp/person/nielsen/BregmanBall/ MINIBALL/ Source code: Basic MiniBall, Line intersection by projective geometry Visual Computing: Geometry, Graphics, and Vision , ISBN 1-58450-427-7, 2005. In high dimensions, extend B˘ adoiu & Clarkson core-set See On approximating the smallest enclosing Bregman Balls (SoCG’06 video) F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
3D Bregman balls (video) Relative entropy (KL) Itakura-Saito F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Bregman Voronoi/Delaunay EXP F. Nielsen and R. Nock On the Smallest Enclosing Information Disk
Recommend
More recommend