On the Role of Interaction in Network Information Theory Young-Han Kim University of California, San Diego Banff Workshop on Interactive Information Theory January
Networked Information Processing System Communication network System: Internet, peer-to-peer network, sensor network, ... Sources: Data, speech, music, images, video, sensor data Nodes: Handsets, base stations, processors, servers, sensor nodes, ... Network: Wired, wireless, or a hybrid of the two Task: Communicate the sources, or compute/make decision based on them Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Network Information Theory Communication network Network information flow questions: 㶳 What is the limit on the amount of communication needed? 㶳 What are the coding schemes/techniques that achieve this limit? Challenges: 㶳 Many networks inherently allow for two-way interactions 㶳 Most coding schemes are limited to one-way communications Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Objectives of the Talk Review coding schemes that utilizes two-way interactions Focus on the channel coding side of the story (given yesterday’s talks) Draw mostly from a few classical examples and open problems (El Gamal–K ) Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Discrete Memoryless Channel (DMC) with Feedback ̂ M X i p ( y | x ) Y i M Encoder Decoder Y i − 1 Feedback does not increase the capacity of a DMC (Shannon ): C FB = max p ( x ) I ( X ; Y ) = C Nonetheless, feedback can help communication in several important ways 㶳 Feedback can simplify coding and improve reliability (Schalkwijk–Kailath ) 㶳 Feedback can increase the capacity of channels with memory (Butman ) 㶳 Feedback can enlarge the capacity region of DM multiuser channels (Gaarder–Wolf ) Insights on the fundamental limit of two-way interactive communication Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Iterative Refinement Binary erasure channel: 1 − p 1 1 e X Y 0 0 1 − p Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Iterative Refinement Binary erasure channel: 1 − p 1 1 e X Y 0 0 1 − p Basic idea: 㶳 First send a message at a rate higher than the channel capacity (without coding) 㶳 Then iteratively refine the receiver’s knowledge about the message Examples: 㶳 Schalkwijk–Kailath coding scheme () 㶳 Horstein’s coding scheme () 㶳 Posterior matching scheme (Shayevitz–Feder ) 㶳 Block feedback coding scheme (Weldon , Ahlswede , Ooi–Wornell ) Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Gaussian Channel with Feedback Z X Y Expected average transmitted power constraint n 堈 E ( x 2 i ( m , Y i − 1 )) ≤ nP , m ∈ [ 1 : 2 nR ] i = 1 Schalkwijk–Kailath Coding Scheme (Schalkwijk–Kailath , Schalkwijk ): X 1 ∝ θ , X i ∝ θ − ̂ θ i − 1 ( Y i − 1 ) Doubly exponentially small probability of error Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Posterior Matching Scheme (Shayevitz–Feder ) Recall the Schalkwijk–Kailath coding scheme: X 1 ∝ Θ ∼ N ( 0, 1 ) , X i ∝ Θ − ̂ Θ i − 1 ( Y i − 1 ) ∝ X i − 1 − E ( X i − 1 | Y i − 1 ) ⊥ Y i − 1 㶳 Y 1 , Y 2 , . . . are i.i.d. Consider a general DMC p ( y | x ) with a capacity-achieving input pmf p ( x ) : X 1 = F − 1 X ( F Θ ( Θ )) , Θ ∼ Unif [ 0, 1 ) X i = F − 1 X ( F Θ | Y і−1 ( Θ | Y i − 1 )) ⊥ Y i − 1 㶳 Y 1 , Y 2 , . . . are i.i.d. Generalizes repetition for BEC, S–K for Gaussian, and Horstein for BSC Actual proof involves properties of iterated random functions Question: Elementary proof (say, for BSC)? Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Block Feedback Coding Scheme 1 − p Z ∼ Bern ( p ) 1 1 X Y X Y 0 0 1 − p Implementation of iterative refinement at the block level (Weldon ): 㶳 Initially, transmit k bits uncoded 㶳 Learn the error (via feedback), compress it using kH ( p ) bits, and transmit the compression index uncoded 㶳 Communicate the error about the error ( kH 2 ( p ) bits) 㶳 Communicate the error about the error about the error Achievable rate: k /( k + kH ( p ) + kH 2 ( p ) + kH 3 ( p ) + ⋅ ⋅ ⋅) = 1 − H ( p ) Extensions (Ahlswede , Ooi–Wornell ) Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Multiple Access Channel (MAC) with Feedback Y i − 1 M 1 X 1 i Encoder M 1 , ̂ ̂ Y i p ( y | x 1 , x 2 ) M 2 Decoder M 2 X 2 i Encoder Y i − 1 Transmission cooperation: x 1 i ( M 1 , Y i − 1 ) , x n 2 ( M 2 , Y i − 1 ) Capacity region C is not known in general Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Example: Binary Erasure MAC X 1 ∈ { 0, 1 } Y ∈ { 0, 1, 2 } X 2 ∈ { 0, 1 } Capacity region without feedback: R 1 ≤ 1, R 2 ≤ 1, R 1 + R 2 ≤ 3 / 2 Block feedback coding scheme (Gaarder–Wolf ): 㶳 R sym = 2 / 3 : k uncoded transmissions + k / 2 one-sided retransmissions 㶳 R sym = 3 / 4 : k uncoded transmissions + k / 4 two-sided retransmissions + k / 16 + ⋅ ⋅ ⋅ 㶳 R sym = 0.7602 : k uncoded transmissions + k /( 2 log 3 ) cooperative retransmissions sym = 0.7911 (Cover–Leung , Willems ) R ∗ Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Cover–Leung Coding Scheme Y i − 1 M 1 X 1 i Encoder M 1 , ̂ ̂ p ( y | x 1 , x 2 ) Y i M 2 Decoder M 2 X 2 i Encoder Y i − 1 Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Cover–Leung Coding Scheme Y i − 1 X 1 i M 1 Encoder M 1 , ̂ ̂ p ( y | x 1 , x 2 ) Y i M 2 Decoder M 2 X 2 i Encoder Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Cover–Leung Coding Scheme Y n ( j − 1 ) ̃ 1 ( j ) X n M 2, j − 1 , M 1 j Encoder Y n ( j ) p ( y | x 1 , x 2 ) Decoder 2 ( j ) M 2, j − 1 , M 2 j X n Encoder Block Markov coding Backward decoding (Willems–van der Meulen , Zeng–Kuhlmann–Buzo ) Willems condition (): Optimal when X 1 is a function of ( X 2 , Y ) Not optimal for the Gaussian MAC (Ozarow ) Question: Posterior matching for MAC? Question: Optimality of Cover–Leung for one-sided feedback? Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Broadcast Channel (BC) with Feedback Y i − 1 1 ̂ Y 1 i M 1 Decoder X i M 1 , M 2 p ( y 1 , y 2 | x ) Encoder ̂ Y 2 i M 2 Decoder Y i − 1 2 Receivers operate separately (regardless of feedback) Physically degraded BC p ( y 1 | x ) p ( y 2 | y 1 ) : 㶳 Feedback does not enlarge the capacity region (El Gamal ) How can feedback help? Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Dueck’s Example Z ∼ Bern ( 1 / 2 ) X 1 Y 1 = ( X 0 , X 1 ⊕ Z ) 怂 怒 怒 怒 怊 X 怒 X 0 怒 怒 怚 Y 2 = ( X 0 , X 2 ⊕ Z ) X 2 Capacity region without feedback: {( R 1 , R 2 ) : R 1 + R 2 ≤ 1 } Capacity region with feedback (Dueck ): {( R 1 , R 2 ) : R 1 ≤ 1, R 2 ≤ 1 } Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Dueck’s Example Z i ∼ Bern ( 1 / 2 ) X 1 i Y 1 i = ( Z i − 1 , X 1 i ⊕ Z i ) → X 2, i − 1 Z i − 1 Y 2 i = ( Z i − 1 , X 2 i ⊕ Z i ) → X 1, i − 1 X 2 i Capacity region without feedback: {( R 1 , R 2 ) : R 1 + R 2 ≤ 1 } Capacity region with feedback (Dueck ): {( R 1 , R 2 ) : R 1 ≤ 1, R 2 ≤ 1 } Feedback helps by letting the encoder broadcast common channel information Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Dueck’s Example Z i ∼ Bern ( 1 / 2 ) X 1 i Y 1 i = ( Z i − 1 , X 1 i ⊕ Z i ) → X 2, i − 1 Z i − 1 Y 2 i = ( Z i − 1 , X 2 i ⊕ Z i ) → X 1, i − 1 X 2 i Extension to general BC (Shayevitz–Wigger ) “Learn from the past, don’t predict the future” (Tse ) Gaussian BC: Schalkwijk–Kailath coding scheme to LQG control (Ozarow–Leung , Elia , Ardestanizadeh–Minero–Franceschetti ) Question: What’s going on with Gaussian? (Exactly why feedback helps?) Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Two-Way Channel ̂ M 1 X 1 i Y 2 i M 1 Encoder Decoder p ( y 1 , y 2 | x 1 , x 2 ) ̂ M 2 Y 1 i X 2 i M 2 Decoder Encoder Node Node The first multiuser channel model (Shannon ) Capacity region C is not known in general Main difficulties: 㶳 Two information flows share the same channel, inflicting interference to each other 㶳 Each node has to play two competing roles of communicating its own message and providing feedback to help the other node Two-way channel with common output: Y 1 = Y 2 = Y Young-Han Kim (UCSD) Role of Interactionin NIT Banff, January /
Recommend
More recommend