on the number of delaunay triangles occurring in all
play

On the Number of Delaunay Triangles occurring in all Contiguous - PowerPoint PPT Presentation

On the Number of Delaunay Triangles occurring in all Contiguous Subsequences Felix Weitbrecht Department of Computer Science Universit at Stuttgart joined work with S. Funke Motivation Subcomplexes of the Delaunay triangulation useful


  1. On the Number of Delaunay Triangles occurring in all Contiguous Subsequences Felix Weitbrecht Department of Computer Science Universit¨ at Stuttgart joined work with S. Funke

  2. Motivation • Subcomplexes of the Delaunay triangulation useful for representing the shape of objects from discrete samples – α -shapes, β -skeleton, the crust

  3. Motivation • Subcomplexes of the Delaunay triangulation useful for representing the shape of objects from discrete samples – α -shapes, β -skeleton, the crust • Restrict temporal samples to shorter time intervals – α -shapes used to visualize the regions of storm events [Bonerath et al. ’19]

  4. Motivation • Subcomplexes of the Delaunay triangulation useful for representing the shape of objects from discrete samples – α -shapes, β -skeleton, the crust • Restrict temporal samples to shorter time intervals – α -shapes used to visualize the regions of storm events [Bonerath et al. ’19] • Precompute all Delaunay triangles occurring in all contiguous subsequences & index them w.r.t. time, possibly some other parameter ( α value, ...) for faster retrieval

  5. Some Delaunay Triangulations • P = { p 1 , p 2 , . . . , p n } , P i,j := { p i , p i +1 , . . . , p j } • Example: Incremental construction of DT ( P ) via the sequence DT ( P 1 , 3 ) , DT ( P 1 , 4 ) , . . . DT ( P 1 ,n )

  6. Some Delaunay Triangulations • P = { p 1 , p 2 , . . . , p n } , P i,j := { p i , p i +1 , . . . , p j } • Example: Incremental construction of DT ( P ) via the sequence DT ( P 1 , 3 ) , DT ( P 1 , 4 ) , . . . DT ( P 1 ,n ) DT ( P 1 , 3 ) p 2 p 1 p 3

  7. Some Delaunay Triangulations • P = { p 1 , p 2 , . . . , p n } , P i,j := { p i , p i +1 , . . . , p j } • Example: Incremental construction of DT ( P ) via the sequence DT ( P 1 , 3 ) , DT ( P 1 , 4 ) , . . . DT ( P 1 ,n ) DT ( P 1 , 4 ) p 2 p 4 p 1 p 3

  8. Some Delaunay Triangulations • P = { p 1 , p 2 , . . . , p n } , P i,j := { p i , p i +1 , . . . , p j } • Example: Incremental construction of DT ( P ) via the sequence DT ( P 1 , 3 ) , DT ( P 1 , 4 ) , . . . DT ( P 1 ,n ) DT ( P 1 , 5 ) p 5 p 2 p 4 p 1 p 3

  9. Some Delaunay Triangulations • P = { p 1 , p 2 , . . . , p n } , P i,j := { p i , p i +1 , . . . , p j } • Example: Incremental construction of DT ( P ) via the sequence DT ( P 1 , 3 ) , DT ( P 1 , 4 ) , . . . DT ( P 1 ,n ) DT ( P 2 , 5 ) p 5 p 2 p 4 p 1 p 3

  10. Some Delaunay Triangulations • P = { p 1 , p 2 , . . . , p n } , P i,j := { p i , p i +1 , . . . , p j } • Example: Incremental construction of DT ( P ) via the sequence DT ( P 1 , 3 ) , DT ( P 1 , 4 ) , . . . DT ( P 1 ,n ) • T i,j : triangles of DT ( P i,j ) DT ( P 2 , 5 ) • T := � i<j T i,j • | T | = ? p 5 p 2 p 4 p 1 p 3

  11. Some Delaunay Triangulations • P = { p 1 , p 2 , . . . , p n } , P i,j := { p i , p i +1 , . . . , p j } • Another example with | T | ∈ Θ( n 2 ) p n p n p n 2 +2 2 +1 p 1 p 2 p 3 p n/ 2

  12. What is the expected number of Delaunay triangles in contiguous subsequences for arbitrary point sets P ordered uniformly at random ?

  13. Counting Delaunay Edges and Triangles • Let E T := { e | ∃ t ∈ T : e edge of t } • Assume non-degeneracy of P – No 4 co-circular points, no 3 co-linear points • Proof: 1. Bound the expected number of Delaunay edges 2. Show linear dependence between the number of Delaunay triangles and Delaunay edges

  14. Lemma 1: Any e = { p i , p j } ∈ E T appears in DT ( P i,j ) There exists some triangle t ∈ T which uses e , so for suitable a ≤ i, b ≥ j , e appears in DT ( P a,b ) : DT ( P a,b ) p j p i

  15. Lemma 1: Any e = { p i , p j } ∈ E T appears in DT ( P i,j ) There exists some triangle t ∈ T which uses e , so for suitable a ≤ i, b ≥ j , e appears in DT ( P a,b ) : P a,b p j p i

  16. Lemma 1: Any e = { p i , p j } ∈ E T appears in DT ( P i,j ) There exists some triangle t ∈ T which uses e , so for suitable a ≤ i, b ≥ j , e appears in DT ( P a,b ) : P i,j p j p i

  17. Lemma 1: Any e = { p i , p j } ∈ E T appears in DT ( P i,j ) There exists some triangle t ∈ T which uses e , so for suitable a ≤ i, b ≥ j , e appears in DT ( P a,b ) : DT ( P i,j ) p j p i ⇒ e ∈ DT ( P i,j )

  18. 6 Lemma 2: For j > i + 1 : Pr [ e ∈ DT ( P i,j )] < j − i • DT ( P i,j ) is a planar graph with j − i + 1 nodes Euler’s formula: ≤ 3( j − i + 1) − 6 edges

  19. 6 Lemma 2: For j > i + 1 : Pr [ e ∈ DT ( P i,j )] < j − i • DT ( P i,j ) is a planar graph with j − i + 1 nodes Euler’s formula: ≤ 3( j − i + 1) − 6 edges • DT ( P i,j ) does not depend on ordering of points within P i,j

  20. 6 Lemma 2: For j > i + 1 : Pr [ e ∈ DT ( P i,j )] < j − i • DT ( P i,j ) is a planar graph with j − i + 1 nodes Euler’s formula: ≤ 3( j − i + 1) − 6 edges • DT ( P i,j ) does not depend on ordering of points within P i,j • All points in P i,j are equally likely to be p i /p j

  21. 6 Lemma 2: For j > i + 1 : Pr [ e ∈ DT ( P i,j )] < j − i • DT ( P i,j ) is a planar graph with j − i + 1 nodes Euler’s formula: ≤ 3( j − i + 1) − 6 edges • DT ( P i,j ) does not depend on ordering of points within P i,j • All points in P i,j are equally likely to be p i /p j • So choosing p i and p j out of P i,j is the same as choosing � j − i +1 � one edge (amongst all possible edges) in a graph 2 with j − i + 1 nodes and ≤ 3( j − i + 1) − 6 edges

  22. 6 Lemma 2: For j > i + 1 : Pr [ e ∈ DT ( P i,j )] < j − i • DT ( P i,j ) is a planar graph with j − i + 1 nodes Euler’s formula: ≤ 3( j − i + 1) − 6 edges • DT ( P i,j ) does not depend on ordering of points within P i,j • All points in P i,j are equally likely to be p i /p j • So choosing p i and p j out of P i,j is the same as choosing � j − i +1 � one edge (amongst all possible edges) in a graph 2 with j − i + 1 nodes and ≤ 3( j − i + 1) − 6 edges ⇒ Pr [ e ∈ DT ( P i,j )] ≤ 3( j − i +1) − 6 6 < ( ) j − i +1 j − i 2

  23. Lemma 3: The expected size of E T is Θ( n log n ) Lower bound: • Within P 1 , 1 , ..., P 1 ,n , p 1 ’s nearest neighbor changes Θ(log n ) times in expectation – Applies to all p i • Nearest neighbor graph is a subgraph of the Delaunay triangulation ⇒ E [ | E T | ] ∈ Ω( n log n )

  24. Lemma 3: The expected size of E T is Θ( n log n ) Upper bound: Use linearity of expectation to sum over all potential edges of E T • Edges { p i , p i +1 } always exist 6 • Other edges { p i , p j } exist with probability < j − i n − 1 n � � E [ | E T | ] = Pr [ { p i , p j } ∈ E T ] i =1 j = i +1 n − 1 n n − 1 n − i � � 6 1 � � � � ≤ 1 + = ( n − 1) + 6 j − i j i =1 j = i +2 i =1 j =2 n − 1 � ≤ ( n − 1) + 6 H n = O ( n log n ) i =1

  25. Delaunay edges used by many Delaunay triangles p 1 DT ( P 1 , 3 ) p 2

  26. Delaunay edges used by many Delaunay triangles p 1 DT ( P 1 , 4 ) p 2

  27. Delaunay edges used by many Delaunay triangles p 1 DT ( P 1 , 5 ) p 2

  28. Delaunay edges used by many Delaunay triangles p 1 DT ( P 1 , 5 ) p 2 → Edge { p 1 , p 2 } used by many Delaunay triangles

  29. Lemma 4: | T | ∈ Θ( | E T | ) for arbitrary orderings of P • For each triangle in T , at most 3 edges exist in E T ⇒ | E T | ≤ 3 | T | • For upper bound on edges, charge triangles to edges: • Delaunay triangle p a p b p c ( a < b < c ) exists in DT ( P a,c ) • In DT ( P a,c ) , at most one other triangle uses edge { p a , p c } ⇒ Charging T ’s triangles p a p b p c to { p a , p c } ensures at most two triangles are charged to each edge in E T ⇒ | T | ≤ 2 | E T |

  30. Putting it all together What is the expected number of Delaunay triangles in contiguous subsequences for arbitrary point sets P ordered uniformly at random ?

  31. Putting it all together What is the expected number of Delaunay triangles in contiguous subsequences for arbitrary point sets P ordered uniformly at random ? E [ | E T | ] = Θ( n log n ) and | T | ∈ Θ( | E T | ) ⇒ E [ | T | ] = Θ( n log n )

  32. Experimental results & data | � n j ≤ n T 1 ,j | | T | T computation time 2 15 196,168 2,860,956 6,309 ms 2 16 392,592 6,267,247 14,229 ms 2 17 785,879 13,622,094 32,817 ms 2 18 1,572,292 29,425,885 70,545 ms 2 19 3,144,770 63,210,634 155,370 ms 2 20 6,290,562 135,134,028 347,186 ms 2 21 12,581,989 287,719,166 771,705 ms n points sampled from the unit square, averaged over 20 runs

  33. On the Number of Delaunay Triangles occurring in all Contiguous Subsequences Felix Weitbrecht Department of Computer Science Universit¨ at Stuttgart about work with S. Funke

  34. More data | � n | T | T time j ≤ n T 1 ,j | T 1 ,n time 2 15 2,860,956 6,309 ms 196,168 260 ms 2 16 6,267,247 14,229 ms 392,592 745 ms 2 17 13,622,094 32,817 ms 785,879 1,779 ms 2 18 29,425,885 70,545 ms 1,572,292 4,068 ms 2 19 63,210,634 155,370 ms 3,144,770 9,008 ms 2 20 135,134,028 347,186 ms 6,290,562 20,374 ms 2 21 287,719,166 771,705 ms 12,581,989 44,082 ms

Recommend


More recommend