on the amortized complexity of zero knowledge protocols
play

On the Amortized Complexity of Zero Knowledge Protocols for - PowerPoint PPT Presentation

On the Amortized Complexity of Zero Knowledge Protocols for Multiplicative Relations Ronald Cramer 1 ard 2 Valerio Pastro 2 Ivan Damg 1 CWI Amsterdam 2 Aarhus University August 15, 2012 Centrum Wiskunde & Informatica Cramer, Damg ard,


  1. On the Amortized Complexity of Zero Knowledge Protocols for Multiplicative Relations Ronald Cramer 1 ard 2 Valerio Pastro 2 Ivan Damg˚ 1 CWI Amsterdam 2 Aarhus University August 15, 2012 Centrum Wiskunde & Informatica Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 1 / 22

  2. The Problem Scenario P holds x , y , z (in a finite field K ) s.t. z = xy V holds hom. commitments com ( x ) , com ( y ) , com ( z ), of size κ V wants to be sure z = xy P does not want to reveal x , y , z Commitments Homomorphic: com ( a ) · com ( b ) = com ( a + b ) Shorthand: com ( · ) = [ · ] Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 2 / 22

  3. The Problem Motivation Zero Knowledge proofs for satisfiability of Boolean circuits MPC based on additive secret sharing [BDOZ11, DPSZ12] Anonymous credentials, group signatures, . . . Previous and Related Work (Apologies if I forgot any of your papers) 1991 Beaver [Bea91] 1997 Fujisaki, Okamoto [FO97] [CDD + 99] 1999 Cramer et al., 2002 Damg˚ ard, Fujisaki [DF02] 2009 Cramer, Damg˚ ard [CD09] 2012 Ben-Sasson et al. [BSFO12] Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 3 / 22

  4. A Well-Known Solution [Bea91] Protocol P samples uniform a , b ← K P computes c = ab , and sends [ a ] , [ b ] , [ c ] to V V sends a uniform e ← K P opens [ ex − a ] , [ y − b ], define ε := ex − a , δ := y − b P opens [ ez − c − ε b − δ a − εδ ] V checks that P opened to 0 Properties Correctness: P honest = ⇒ ez − c − ε b − δ a − εδ = 0 Soundness: P dishonest = ⇒ Cheat with prob 1 / | K | (guess e ) Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 4 / 22

  5. Room for Improvement What if | K | small (e.g. K = F 2 )? Constant soundness error probability = ⇒ Bad! ⇒ soundness error 2 − l Repeating l times = Communication? O ( κ · l ) Basic Field Case Soundness Error Amortized comm. complexity 2 − l Previous solutions: O ( l · κ ) 2 − l Our work: O ( κ ) Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 5 / 22

  6. Our Solution Ingredients Homomorphic commitments (size = κ ) (for this part: statistically binding, computationally hiding commitment schemes) Linear (multi)secret sharing schemes with R -product reconstruction (share s , share s ′ , reconstruct s · s ′ as linear combo of shares of R players) commitments: not to reveal x , y , z homomorphic: to compute sums on committed values! multi-secret: to use amortization techniques! [CD09]. Amortization: more instances to prove ⇒ better comm. complexity! Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 6 / 22

  7. Digression on LSSS (multi-secret variant of Shamir) How to Share? Secret: x := ( x 1 , . . . , x l ). Polynomial: f x ← K [ X ], with deg( f x ) = t + l f x ( − i ) = x i for i = 1 , . . . , l Shares: f x (1) , . . . , f x ( n ) x l x l − 1 x 1 Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 7 / 22

  8. Digression on LSSS (multi-secret variant of Shamir) How to Share? Secret: x := ( x 1 , . . . , x l ). Polynomial: f x ← K [ X ], with deg( f x ) = t + l f x ( − i ) = x i for i = 1 , . . . , l Shares: f x (1) , . . . , f x ( n ) x l x l − 1 x 1 Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 8 / 22

  9. Digression on LSSS (multi-secret variant of Shamir) How to Share? Secret: x := ( x 1 , . . . , x l ). Polynomial: f x ← K [ X ], with deg( f x ) = t + l f x ( − i ) = x i for i = 1 , . . . , l Shares: f x (1) , . . . , f x ( n ) f x ( n ) f x (3) f x (1) x l x l − 1 x 1 f x (2) Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 9 / 22

  10. Digression on LSSS Product Reconstruction? (Yes, if n > 2( t + l )) Share x , y Local products f x ( i ) · f y ( i ) for > 2( t + l ) i ’s Reconstruct f x · f y Evaluate ( f x · f y )( − i ) for i = 1 , . . . , l Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 10 / 22

  11. Digression on LSSS Product Reconstruction? (Yes, if n > 2( t + l )) Share x , y Local products f x ( i ) · f y ( i ) for > 2( t + l ) i ’s Reconstruct f x · f y Evaluate ( f x · f y )( − i ) for i = 1 , . . . , l Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 11 / 22

  12. Digression on LSSS Product Reconstruction? (Yes, if n > 2( t + l )) Share x , y Local products f x ( i ) · f y ( i ) for > 2( t + l ) i ’s Reconstruct f x · f y Evaluate ( f x · f y )( − i ) for i = 1 , . . . , l Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 12 / 22

  13. Digression on LSSS Product Reconstruction? (Yes, if n > 2( t + l )) Share x , y Local products f x ( i ) · f y ( i ) for > 2( t + l ) i ’s Reconstruct f x · f y Evaluate ( f x · f y )( − i ) for i = 1 , . . . , l Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 13 / 22

  14. Digression on LSSS Product Reconstruction? (Yes, if n > 2( t + l )) Share x , y Local products f x ( i ) · f y ( i ) for > 2( t + l ) i ’s Reconstruct f x · f y Evaluate ( f x · f y )( − i ) for i = 1 , . . . , l z 1 z l z l − 1 Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 14 / 22

  15. Notice: Fact #1 V holds t evals f x ( j ) and f y ( j ) = ⇒ no info on f y ( − i ), f y ( − i ), ( f x · f y )( − i ) revealed to V . Fact #2 f � = g ∈ K [ X ], deg( f ) = 2( t + l ) = deg( g ) = ⇒ f and g agree on at most 2( t + l ) points. Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 15 / 22

  16. Back to the Original Problem. What if . . . ? Toy Protocol – Basic Field Scenario P samples f x , f y ← K [ X ], with deg( f x ) = t + l = deg( f y ), f x ( − i ) = x i , f y ( − i ) = y i P computes f z = f x · f y P commits [ f x ] , [ f y ] , [ f z ] V chooses t indices O ⊂ { 1 , . . . , n } P opens [ f x ]( j ), [ f y ]( j ), [ f z ]( j ) for j ∈ O V accepts iff f x ( j ) · f y ( j ) = f z ( j ) Private x i , y i , z i Fact #1 ⇒ no info revealed on secrets! Soundness Error � t � 2( t + l ) Fact #2 & Choice of O ⇒ soundness error ≤ n Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 16 / 22

  17. Back to the Original Problem. What if . . . ? Toy Protocol – Basic Field Scenario P samples f x , f y ← K [ X ], with deg( f x ) = t + l = deg( f y ), f x ( − i ) = x i , f y ( − i ) = y i P computes f z = f x · f y P commits [ f x ] , [ f y ] , [ f z ] V chooses t indices O ⊂ { 1 , . . . , n } P opens [ f x ]( j ), [ f y ]( j ), [ f z ]( j ) for j ∈ O V accepts iff f x ( j ) · f y ( j ) = f z ( j ) Private x i , y i , z i Fact #1 ⇒ no info revealed on secrets! Soundness Error � t � 2( t + l ) = 2 − l , if t , l = Θ( n ) Fact #2 & Choice of O ⇒ s.e. ≤ n Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 17 / 22

  18. The General Result Shamir: n < | K | = ⇒ general LSSS? Basic Field Case Using a linear (multi)secret sharing scheme over K with K a finite field d players t privacy l secrets R product reconstruction A zero-knowledge protocol for the language � � ( com ( x i ) , com ( y i ) , com ( z i )) l i =1 | x i , y i , z i ∈ K ; x i · y i = z i , � R − 1 � t with soundness error d Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 18 / 22

  19. Parameters Choice of parameters to get negligible soundness error: Basic Field Case Using a linear (multi)secret sharing scheme over K with K a finite field d players d = Θ( l ) t privacy t = Θ( l ) l secrets R product reconstruction R = Θ( l ) A zero-knowledge protocol for the language � � ( com ( x i ) , com ( y i ) , com ( z i )) l i =1 | x i , y i , z i ∈ K ; x i · y i = z i , � R − 1 � t = 2 − l . Amo.Comm.: O ( κ ) with soundness error d Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 19 / 22

  20. Comparisons & Extensions Basic Field Case Soundness Error Amortized comm. complexity 2 − l Our work: O ( κ ) 2 − l Previous solutions: O ( l · κ ) Let’s play! What if values were integers (rather than in a finite field)? We have a solution! k -bit Integers Case Security Notion Our work: Factoring Previous solutions: Strong-RSA Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 20 / 22

  21. Comparisons & Extensions - General Field Case Basic field case: x · y = z . General field case: D ( x 1 , . . . , x v ) = z . Extension of protocol: to prove any algebraic rel. on committed values. Formally, a zero knowledge protocol for the language � ( com ( x 1 , i ) , . . . , com ( x v , i ) , com ( z i )) l i =1 | � x 1 , i , . . . , x v , i , z i ∈ K ; D ( x 1 , i , . . . , x v , i ) = z i , where D is an algebraic circuit. Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 21 / 22

  22. Final Slide Q: Standard commitments: cheating? A: We also consider commitments of the following form � P : v , m v = a · v + b v [ v ] : : a , V b v given by some setup, e.g. the preprocessing phase of [BDOZ11], or [DPSZ12]. Such commitments: Homomorphic (that is all we need!) Information theoretically secure NEW! Can be used over the integers! Cramer, Damg˚ ard, Pastro (Aa, Am) Facts on LSSS August 15, 2012 22 / 22

Recommend


More recommend