on model checking techniques for randomized distributed
play

On Model Checking Techniques for Randomized Distributed Systems - PowerPoint PPT Presentation

On Model Checking Techniques for Randomized Distributed Systems Christel Baier Technische Universit at Dresden joint work with Nathalie Bertrand Frank Ciesinski Marcus Gr oer 1 / 161 Probability elsewhere int-01 randomized


  1. Randomized mutual exclusion protocol mdp-05 • interleaving of the request operations • competition if both processes are waiting • randomized arbiter tosses a coin if both are waiting n 1 n 2 n 1 n 2 n 1 n 2 request 2 request 2 request 2 request 1 request 1 request 1 MDP release 2 release 2 release 2 release 1 release 1 release 1 w 1 n 2 w 1 n 2 w 1 n 2 n 1 w 2 n 1 w 2 n 1 w 2 request 2 request 2 request 2 request 1 request 1 request 1 e e e n r r r n n 1 1 1 e e e t t t t t t e e e n n n r r r e e e 2 2 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 r r r e e e e 1 e 1 e 1 l l l c 1 n 2 s s n 1 c 2 c 1 n 2 c 1 n 2 e e e s n 1 c 2 n 1 c 2 a a a a a a e e e s s s l l e 2 e 2 e 2 1 1 1 1 1 1 l e e e coin coin coin r r r 2 2 r r r 2 2 2 2 e e e t t t q 1 1 1 q q s s s u u u e e e u u u e e e s s s q q q t t t e e e r r r 2 2 2 c 1 w 2 w 1 c 2 c 1 w 2 c 1 w 2 w 1 c 2 w 1 c 2 21 / 161

  2. Randomized mutual exclusion protocol mdp-05 • interleaving of the request operations • competition if both processes are waiting • randomized arbiter tosses a coin if both are waiting n 1 n 2 n 1 n 2 n 1 n 2 request 2 request 2 request 2 request 1 request 1 request 1 MDP release 2 release 2 release 2 release 1 release 1 release 1 w 1 n 2 w 1 n 2 w 1 n 2 n 1 w 2 n 1 w 2 n 1 w 2 request 2 request 2 request 2 request 1 request 1 request 1 e e e n r r r n n 1 1 1 e e e t t t t t t e e e n n n r r r e e e 2 2 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 w 1 w 2 r r r e e e e 1 e 1 e 1 l l l c 1 n 2 s s n 1 c 2 c 1 n 2 c 1 n 2 e e e s n 1 c 2 n 1 c 2 a a a a a a e e e s s s l l e 2 e 2 e 2 1 1 1 1 1 1 l e e e r r r 2 toss a toss a toss a 2 r r r 2 2 2 2 e e e t t t q 1 1 1 q q s s s u u u e e e coin coin coin u u u e e e s s s q q q t t t e e e r r r 2 2 2 c 1 w 2 c 1 w 2 w 1 c 2 w 1 c 2 c 1 w 2 c 1 w 2 c 1 w 2 c 1 w 2 w 1 c 2 w 1 c 2 w 1 c 2 w 1 c 2 22 / 161

  3. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers 23 / 161

  4. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S ∗ − D : S ∗ − D : S ∗ − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n 24 / 161

  5. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S ∗ − D : S ∗ − D : S ∗ − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n • each scheduler induces an infinite Markov chain β β β 2 1 1 1 2 2 α α α 3 3 3 3 3 3 σ σ σ α α α γ γ γ 1 1 1 β β β δ δ δ 2 2 2 3 3 3 3 3 3 δ δ δ γ γ γ σ σ σ MDP α 2 α 2 α 2 1 1 1 σ σ σ 3 3 3 3 3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 / 161

  6. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S ∗ − D : S ∗ − D : S ∗ − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n • each scheduler induces an infinite Markov chain � � �    yields a notion of probability measure Pr D Pr D Pr D on measurable sets of infinite paths 26 / 161

  7. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S ∗ − D : S ∗ − D : S ∗ − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n • each scheduler induces an infinite Markov chain � � �    yields a notion of probability measure Pr D Pr D Pr D on measurable sets of infinite paths typical task: given a measurable path event E E E , ∗ ∗ ∗ check whether E E E holds almost surely, i.e., Pr D ( E ) = 1 Pr D ( E ) = 1 Pr D ( E ) = 1 for all schedulers D D D 27 / 161

  8. Reasoning about probabilities in MDP mdp-10 • requires resolving the nondeterminism by schedulers a scheduler is a function D : S ∗ − D : S ∗ − D : S ∗ − • → Act → Act → Act s.t. action D ( s 0 . . . s n ) D ( s 0 . . . s n ) D ( s 0 . . . s n ) is enabled in state s n s n s n • each scheduler induces an infinite Markov chain � � �    yields a notion of probability measure Pr D Pr D Pr D on measurable sets of infinite paths typical task: given a measurable path event E E E , ∗ ∗ ∗ check whether E E E holds almost surely ∗ ∗ ∗ compute the worst-case probability for E E E , i.e., Pr D ( E ) Pr D ( E ) Pr D ( E ) Pr D ( E ) Pr D ( E ) Pr D ( E ) sup sup sup or inf inf inf D D D D D D 28 / 161

  9. Quantitative analysis of MDP mdp-15 given: MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) with initial state s 0 s 0 s 0 ω -regular path event E ω ω E , E e.g., given by an LTL formula Pr M compute Pr M Pr M Pr D ( s 0 , E ) Pr D ( s 0 , E ) Pr D ( s 0 , E ) max ( s 0 , E ) = sup task: max ( s 0 , E ) = sup max ( s 0 , E ) = sup D D D 29 / 161

  10. Quantitative analysis of MDP mdp-15 given: MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) with initial state s 0 s 0 s 0 ω ω ω -regular path event E E , E e.g., given by an LTL formula Pr M compute Pr M Pr M Pr D ( s 0 , E ) Pr D ( s 0 , E ) Pr D ( s 0 , E ) max ( s 0 , E ) = sup task: max ( s 0 , E ) = sup max ( s 0 , E ) = sup D D D x s = Pr M compute x s = Pr M x s = Pr M method: max ( s , E ) max ( s , E ) for all s ∈ S max ( s , E ) s ∈ S s ∈ S via graph analysis and linear program [Vardi/Wolper’86] [Courcoubetis/Yannakakis’88] [Bianco/de Alfaro’95] [Baier/Kwiatkowska’98] 30 / 161

  11. probabilistic “bad behaviors” system 31 / 161

  12. probabilistic “bad behaviors” system M MDP M M 32 / 161

  13. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A 33 / 161

  14. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A quantitative analysis in the product-MDP M × A M × A M × A � � � � � � � s , init s � , acceptance Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , max max max cond. of A A A 34 / 161

  15. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A maximal probabilility for reaching an quantitative analysis accepting end in the product-MDP M × A M × A M × A component � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 35 / 161

  16. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A maximal probabilility for reaching an probabilistic reachability analysis accepting end in the product-MDP M × A M × A M × A component linear program � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 36 / 161

  17. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M deterministic automaton A A A probabilistic reachability analysis polynomial in the product-MDP M × A M × A M × A in |M| · |A| |M| · |A| |M| · |A| linear program � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 37 / 161

  18. probabilistic “bad behaviors” system LTL formula ϕ ϕ ϕ M MDP M M 2exp deterministic automaton A A A probabilistic reachability analysis polynomial in the product-MDP M × A M × A M × A in |M| · |A| |M| · |A| |M| · |A| linear program � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 38 / 161

  19. probabilistic “bad behaviors” system state explosion LTL formula ϕ ϕ ϕ problem M MDP M M deterministic automaton A A A probabilistic reachability analysis polynomial in the product-MDP M × A M × A M × A in |M| · |A| |M| · |A| |M| · |A| linear program � � � � � � Pr M Pr M Pr M = Pr M×A Pr M×A Pr M×A max ( s , ϕ ) = � s , init s � , max ( s , ϕ ) max ( s , ϕ ) = � s , init s � , � s , init s � , ♦ accEC ♦ accEC ♦ accEC max max max 39 / 161

  20. Advanced techniques for PMC por-01-cmu • • • symbolic model checking with variants of BDDs e.g., in PRISM [Kwiatkowska/Norman/Parker] ProbVerus [Hartonas-Garmhausen, Campos, Clarke] • • • state aggregation with bisimulation e.g., in MRMC [Katoen et al] • • • abstraction-refinement e.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen] PASS [Hermanns/Wachter/Zhang] • • • partial order reduction e.g., in LiQuor [Baier/Ciesinski/Gr¨ oßer] 40 / 161

  21. Advanced techniques for PMC por-01-cmu • • • symbolic model checking with variants of BDDs e.g., in PRISM [Kwiatkowska/Norman/Parker] ProbVerus [Hartonas-Garmhausen, Campos, Clarke] randomized distributed algorithms, communication and multimedia protocols, . . . power management, security, . . . . . . • • • state aggregation with bisimulation e.g., in MRMC [Katoen et al] • • • abstraction-refinement e.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen] PASS [Hermanns/Wachter/Zhang] • • • partial order reduction e.g., in LiQuor [Baier/Ciesinski/Gr¨ oßer] 41 / 161

  22. Advanced techniques for PMC por-01-cmu • • • symbolic model checking with variants of BDDs e.g., in PRISM [Kwiatkowska/Norman/Parker] ProbVerus [Hartonas-Garmhausen, Campos, Clarke] randomized distributed algorithms, communication and multimedia protocols, . . . power management, security, . . . . . . • • • state aggregation with bisimulation e.g., in MRMC [Katoen et al] • • • abstraction-refinement e.g., in RAPTURE [d’Argenio/Jeannet/Jensen/Larsen] PASS [Hermanns/Wachter/Zhang] • • • partial order reduction e.g., in LiQuor [Baier/Ciesinski/Gr¨ oßer] 42 / 161

  23. Partial order reduction por-02 technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990] • attempts to analyze a sub-system by identifying “redundant interleavings” • explores representatives of paths that agree up to the order of independent actions 43 / 161

  24. Partial order reduction por-02 technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990] • attempts to analyze a sub-system by identifying “redundant interleavings” • explores representatives of paths that agree up to the order of independent actions e.g., x := x + y x := x + y x := x + y � � z := z +3 � z := z +3 z := z +3 � �� � � �� � action β β β action α α α has the same effect as α ; β α ; β α ; β or β ; α β ; α β ; α 44 / 161

  25. Partial order reduction por-02 technique for reducing the state space of concurrent systems [Godefroid,Peled,Valmari, ca. 1990] • attempts to analyze a sub-system by identifying “redundant interleavings” • explores representatives of paths that agree up to the order of independent actions DFS-based on-the-fly generation of a reduced system for each expanded state s s s • choose an appropriate subset Ample ( s ) Ample ( s ) Ample ( s ) of Act ( s ) Act ( s ) Act ( s ) α α ∈ Ample ( s ) • expand only the α α -successors of s s s for α ∈ Ample ( s ) α ∈ Ample ( s ) (but ignore the actions in Act ( s ) \ Ample ( s ) Act ( s ) \ Ample ( s ) Act ( s ) \ Ample ( s )) 45 / 161

  26. Partial order reduction por-02a concurrent execution α α α λ λ λ of processes P 1 P 1 P 1 , P 2 P 2 P 2 • no communication β µ µ µ β β λ α α α λ λ • no competition µ γ γ γ β µ α µ λ β β α α ν ν ν λ λ µ γ γ γ µ β µ β β ν ν ν transition system α α α λ λ λ for P 1 �P 2 P 1 �P 2 where P 1 �P 2 γ γ γ ν ν ν µ µ µ β β β P 1 = α ; β ; γ P 1 = α ; β ; γ P 1 = α ; β ; γ P 2 = λ ; µ ; ν P 2 = λ ; µ ; ν P 2 = λ ; µ ; ν γ γ γ ν ν ν 46 / 161

  27. Partial order reduction por-02a concurrent execution α α α of processes P 1 P 1 P 1 , P 2 P 2 P 2 • no communication β β β • no competition λ λ λ µ µ µ transition system for P 1 �P 2 P 1 �P 2 P 1 �P 2 where ν ν ν P 1 = α ; β ; γ P 1 = α ; β ; γ P 1 = α ; β ; γ P 2 = λ ; µ ; ν P 2 = λ ; µ ; ν P 2 = λ ; µ ; ν γ γ γ idea: explore just 1 1 path as representative for all paths 1 47 / 161

  28. Ample-set method [Peled 1993] por-03 given: processes P i P i P i of a parallel system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with transition system T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) task: on-the-fly generation of a sub-system T r T r T r s.t. . . . (A1) stutter condition . . . . . . . . . (A2) dependency condition . . . . . . . . . (A3) cycle condition . . . . . . 48 / 161

  29. Ample-set method [Peled 1993] por-03 given: processes P i P i P i of a parallel system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with transition system T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) task: on-the-fly generation of a sub-system T r T r T r s.t. � π � π r (A1) stutter condition π � π r π � π r (A2) dependency condition by permutations of independent actions (A3) cycle condition π T Each path π π in T T is represented by an “equivalent” π r T r path π r π r in T r T r 49 / 161

  30. Ample-set method [Peled 1993] por-03 given: processes P i P i P i of a parallel system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with transition system T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) T = ( S , Act , → , . . . ) task: on-the-fly generation of a sub-system T r T r T r s.t. � π � π r (A1) stutter condition π � π r π � π r (A2) dependency condition by permutations of independent actions (A3) cycle condition π T Each path π π in T T is represented by an “equivalent” π r T r path π r π r in T r T r � � � � � � T T r T T and T r T r satisfy the same stutter-invariant events, e.g., next-free LTL formulas 50 / 161

  31. Ample-set method for MDP por-04 given: processes P i P i P i of a probabilistic system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with MDP-semantics M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) task: on-the-fly generation of a sub-MDP M r M r M r s.t. M r M M r M r and M M have the same extremal probabilities for stutter-invariant events 51 / 161

  32. Ample-set method for MDP por-04 given: processes P i P i P i of a probabilistic system P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n with MDP-semantics M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) task: on-the-fly generation of a sub-MDP M r M r M r s.t. M For all schedulers D D D for M M there is a scheduler D r D r D r for M r M r s.t. for all measurable, stutter-invariant events E M r E : E Pr D M ( E ) = Pr D r M ( E ) = Pr D r M ( E ) = Pr D r Pr D Pr D M r ( E ) M r ( E ) M r ( E ) � � � � � � M r M M r M r and M M have the same extremal probabilities for stutter-invariant events 52 / 161

  33. Independence of actions por-06 53 / 161

  34. Independence of non-probabilistic actions por-06 Actions α α α and β β β are called independent in a transition system T T T iff: β α α α β β whenever s s s − − − → t → t → t and s s s − − − → u → u → u then (1) α α α is enabled in u u u (2) β β β is enabled in t t t α β β β α α (3) if u u − − − → v → v → v and t t − − − → w → w → w then v = w v = w v = w u t s s s β β β α α α u u u t t t α α α β β β v v v 54 / 161

  35. Independence of actions in an MDP por-06 Let M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) be a MDP and α, β ∈ Act α, β ∈ Act α, β ∈ Act . α α α and β β β are independent in M M M if for each state s s s s.t. α, β ∈ Act ( s ) α, β ∈ Act ( s ) α, β ∈ Act ( s ): (1) if P ( s , α, t ) > 0 P ( s , α, t ) > 0 P ( s , α, t ) > 0 then β ∈ Act ( t ) β ∈ Act ( t ) β ∈ Act ( t ) P ( s , β, u ) > 0 α ∈ Act ( u ) (2) if P ( s , β, u ) > 0 P ( s , β, u ) > 0 then α ∈ Act ( u ) α ∈ Act ( u ) . . . (3) . . . . . . 55 / 161

  36. Independence of actions in an MDP por-06 Let M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) be a MDP and α, β ∈ Act α, β ∈ Act α, β ∈ Act . α α α and β β β are independent in M M M if for each state s s s s.t. α, β ∈ Act ( s ) α, β ∈ Act ( s ) α, β ∈ Act ( s ): (1) if P ( s , α, t ) > 0 P ( s , α, t ) > 0 P ( s , α, t ) > 0 then β ∈ Act ( t ) β ∈ Act ( t ) β ∈ Act ( t ) P ( s , β, u ) > 0 α ∈ Act ( u ) (2) if P ( s , β, u ) > 0 P ( s , β, u ) > 0 then α ∈ Act ( u ) α ∈ Act ( u ) (3) for all states w w w : P ( s , αβ, w ) = P ( s , βα, w ) P ( s , αβ, w ) = P ( s , βα, w ) P ( s , αβ, w ) = P ( s , βα, w ) ր տ ր ր տ տ � � � � � � P ( s , α, t ) · P ( t , β, w ) P ( s , β, u ) · P ( u , α, w ) P ( s , α, t ) · P ( t , β, w ) P ( s , α, t ) · P ( t , β, w ) P ( s , β, u ) · P ( u , α, w ) P ( s , β, u ) · P ( u , α, w ) t ∈ S u ∈ S t ∈ S t ∈ S u ∈ S u ∈ S 56 / 161

  37. Example: ample set method por-08 s s s β γ γ γ β β α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ T original system T T α β γ α α independent from β β and γ γ 57 / 161

  38. Example: ample set method por-08 s s s s s s β γ γ γ β β γ γ γ β β β α α α α α α α α α γ γ γ β β β α α α α α α δ δ δ δ δ δ δ δ δ δ δ δ T T r original system T T reduced system T r T r (A1)-(A3) are fulfilled α β γ α α independent from β β and γ γ 58 / 161

  39. Example: ample set method fails for MDP por-08 s s s s s s β γ γ γ β β γ γ γ β β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β α α α α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ δ δ δ δ δ δ M M r original MDP M M reduced MDP M r M r (A1)-(A3) are fulfilled α β γ α α independent from β β and γ γ 59 / 161

  40. Example: ample set method fails for MDP por-08 s s s s s s β γ γ γ β β γ γ γ β β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β α α α α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ δ δ δ δ δ δ M M r original MDP M M reduced MDP M r M r Pr M Pr M Pr M max ( s , ♦ green ) = 1 ♦ ♦ ♦ “eventually” max ( s , ♦ green ) = 1 max ( s , ♦ green ) = 1 60 / 161

  41. Example: ample set method fails for MDP por-08 s s s s s s β γ γ γ β β γ γ γ β β β 1 1 1 1 1 1 2 2 2 2 2 2 α α α 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 γ γ γ β β β α α α α α α α α α α α α γ γ γ β β β δ δ δ δ δ δ δ δ δ δ δ δ M M r original MDP M M reduced MDP M r M r Pr M 2 = Pr M r Pr M Pr M 1 2 = Pr M r 2 = Pr M r 1 1 max ( s , ♦ green ) = 1 > max ( s , ♦ green ) max ( s , ♦ green ) = 1 max ( s , ♦ green ) = 1 > > max ( s , ♦ green ) max ( s , ♦ green ) 61 / 161

  42. Partial order reduction for MDP por-09 extend Peled’s conditions (A1)-(A3) for the ample-sets (A1) stutter condition . . . . . . . . . (A2) dependency condition . . . . . . . . . . . . (A3) cycle condition . . . . . . (A4) probabilistic condition β 1 β 1 β 1 β 2 β 2 β 2 β n β n β n α α α If there is a path s s − − − → → → − − − → . . . → . . . → . . . − − − → → → − − − → → → in M M M s.t. s β 1 , . . . , β n , α / ∈ Ample ( s ) α β 1 , . . ., β n , α / β 1 , . . . , β n , α / ∈ Ample ( s ) ∈ Ample ( s ) and α α is probabilistic then | Ample ( s ) | = 1 | Ample ( s ) | = 1 | Ample ( s ) | = 1. 62 / 161

  43. Partial order reduction for MDP por-09 extend Peled’s conditions (A1)-(A3) for the ample-sets (A1) stutter condition . . . . . . . . . (A2) dependency condition . . . . . . . . . . . . (A3) cycle condition . . . . . . (A4) probabilistic condition β 1 β 1 β 1 β 2 β 2 β 2 β n β n β n α α α If there is a path s s − − − → → → − − − → . . . → . . . → . . . − − − → → → − − − → → → in M M s.t. M s β 1 , . . . , β n , α / ∈ Ample ( s ) α β 1 , . . ., β n , α / β 1 , . . . , β n , α / ∈ Ample ( s ) ∈ Ample ( s ) and α α is probabilistic then | Ample ( s ) | = 1 | Ample ( s ) | = 1 | Ample ( s ) | = 1. M M r If (A1)-(A4) hold then M M and M r M r have the same extremal probabilities for all stutter-invariant properties. 63 / 161

  44. Probabilistic model checking por-ifm-32 probabilistic quantitative system requirements Markov decision LTL \� \� formula ϕ ϕ ϕ \� M process M M (path event) quantitative analysis of M M M against ϕ ϕ ϕ maximal/minimal probability for ϕ ϕ ϕ 64 / 161

  45. Probabilistic model checking, e.g., LiQuor por-ifm-32 modeling language quantitative P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n requirements partial order reduction reduced LTL \� \� formula ϕ ϕ ϕ \� M r MDP M r M r (path event) quantitative analysis of M r M r M r against ϕ ϕ ϕ maximal/minimal probability for ϕ ϕ ϕ 65 / 161

  46. Probabilistic model checking, e.g., LiQuor por-ifm-32a modeling language quantitative P 1 � . . . �P n P 1 � . . . �P n P 1 � . . . �P n requirements partial order reduction reduced LTL \� \� formula ϕ ϕ ϕ \� M r MDP M r M r (path event) quantitative analysis of M r M r M r against ϕ ϕ ϕ � worst-case maximal/minimal probability for ϕ ϕ ϕ analysis 66 / 161

  47. Outline overview-pomdp • Markov decision processes (MDP) and quantitative analysis against path events • partial order reduction for MDP • partially-oberservable MDP ← ← ← − − − • conclusions 67 / 161

  48. Monty-Hall problem pomdp-01 3 3 3 doors initially closed show candidate master 68 / 161

  49. Monty-Hall problem pomdp-01 3 3 3 doors no prize prize no prize initially closed show candidate master 69 / 161

  50. Monty-Hall problem pomdp-01 3 3 3 doors no prize prize no prize initially closed show candidate master 1. candidate chooses one of the doors 70 / 161

  51. Monty-Hall problem pomdp-01 3 3 3 doors no prize prize no prize initially closed show candidate master 1. candidate chooses one of the doors 2. show master opens a non-chosen, non-winning door 71 / 161

  52. Monty-Hall problem pomdp-01 3 3 3 doors no prize prize no prize initially closed show candidate master 1. candidate chooses one of the doors 2. show master opens a non-chosen, non-winning door 3. candidate has the choice: • keep the choice or • switch to the other (still closed) door 72 / 161

  53. Monty-Hall problem pomdp-01 3 3 3 doors 100 . 000 100 . 000 100 . 000 no prize no prize Euro initially closed show candidate master 1. candidate chooses one of the doors 2. show master opens a non-chosen, non-winning door 3. candidate has the choice: • keep the choice or • switch to the other (still closed) door 4. show master opens all doors 73 / 161

  54. Monty-Hall problem pomdp-01 3 3 3 doors 100 . 000 100 . 000 100 . 000 no prize no prize Euro initially closed show candidate master optimal strategy for the candidate: initial choice of the door: arbitrary revision of the initial choice (switch) 2 probability for getting the prize: 2 2 3 3 3 74 / 161

  55. MDP for the Monty-Hall problem pomdp-02 75 / 161

  56. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed show master’s actions candidate’s actions 2. opens a non-chosen, 1. choose one door non-winning door 3. keep or switch ? 4. opens all doors 76 / 161

  57. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed ❍❍❍❍❍❍❍❍❍❍❍❍ ❍❍❍❍❍❍❍❍❍❍❍❍ ❍❍❍❍❍❍❍❍❍❍❍❍ ✟ ✟ ✟ show master’s actions candidate’s actions ✟✟✟✟✟✟✟✟✟✟✟✟ ✟✟✟✟✟✟✟✟✟✟✟✟ ✟✟✟✟✟✟✟✟✟✟✟✟ 2. opens a non-chosen, 1. choose one door non-winning door 3. keep or switch ? 4. opens all doors ❍ ❍ ❍ start 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 keep switch keep switch keep switch won lost 77 / 161

  58. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed candidate’s actions Pr max (start , ♦ won ) , ♦ won ) , ♦ won ) = 1 , ♦ won ) , ♦ won ) Pr max (start , ♦ won ) Pr max (start , ♦ won ) , ♦ won ) = 1 , ♦ won ) = 1 1. choose one door 3. keep or switch ? optimal scheduler requires start complete information 1 1 1 1 1 1 on the states 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 keep switch switch won won lost 78 / 161

  59. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed candidate’s actions 1. choose one door cannot be distinguished 3. keep or switch ? by the candidate start 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 keep switch keep switch keep switch won won lost 79 / 161

  60. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed candidate’s actions observation-based strategy: 1. choose one door choose action switch in state door i 3. keep or switch ? i i start 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 switch switch switch won won lost 80 / 161

  61. MDP for the Monty-Hall problem pomdp-02 3 3 3 doors no prize prize no prize initially closed candidate’s actions observation-based strategy: 1. choose one door choose action switch in state door i 3. keep or switch ? i i 2 ♦ won : 2 2 probability for ♦ won ♦ won start 3 3 3 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 door 1 door 2 door 3 1 1 2 2 3 3 switch switch switch won won lost 81 / 161

  62. Partially-observable Markov decision process pomdp-05 A partially-observable MDP (POMDP for short) is an MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) together with an equivalence relation ∼ ∼ ∼ on S S S 82 / 161

  63. Partially-observable Markov decision process pomdp-05 A partially-observable MDP (POMDP for short) is an MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) together with an equivalence relation ∼ ∼ ∼ on S S S � � �    if s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 then s 1 , s 2 s 1 , s 2 s 1 , s 2 cannot be distinguished from outside (or by the scheduler) observables: equivalence classes of states 83 / 161

  64. Partially-observable Markov decision process pomdp-05 A partially-observable MDP (POMDP for short) is an MDP M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) M = ( S , Act , P , . . . ) together with an equivalence relation ∼ ∼ ∼ on S S S � � �    if s 1 ∼ s 2 s 1 ∼ s 2 then s 1 , s 2 s 1 ∼ s 2 s 1 , s 2 s 1 , s 2 cannot be distinguished from outside (or by the scheduler) observables: equivalence classes of states observation-based scheduler: scheduler D : S ∗ → Act D : S ∗ → Act D : S ∗ → Act such that for all π 1 , π 2 ∈ S ∗ π 1 , π 2 ∈ S ∗ π 1 , π 2 ∈ S ∗ : D ( π 1 ) = D ( π 2 ) obs ( π 1 ) = obs ( π 2 ) D ( π 1 ) = D ( π 2 ) D ( π 1 ) = D ( π 2 ) if obs ( π 1 ) = obs ( π 2 ) obs ( π 1 ) = obs ( π 2 ) where obs ( s 0 s 1 . . . s n ) = [ s 0 ] [ s 1 ] . . . [ s n ] obs ( s 0 s 1 . . . s n ) = [ s 0 ] [ s 1 ] . . . [ s n ] obs ( s 0 s 1 . . . s n ) = [ s 0 ] [ s 1 ] . . . [ s n ] 84 / 161

  65. Extreme cases of POMDP pomdp-11 extreme cases of an POMDP: • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 iff s 1 = s 2 s 1 = s 2 s 1 = s 2 • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 for all s 1 s 1 s 1 , s 2 s 2 s 2 85 / 161

  66. Extreme cases of POMDP pomdp-11 extreme cases of an POMDP: • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 iff s 1 = s 2 s 1 = s 2 s 1 = s 2 ← ← ← − − − standard MDP • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 for all s 1 s 1 s 1 , s 2 s 2 s 2 86 / 161

  67. Probabilistic automata are special POMDP pomdp-11 extreme cases of an POMDP: • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 iff s 1 = s 2 s 1 = s 2 s 1 = s 2 ← ← ← − − − standard MDP • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 for all s 1 s 1 s 1 , s 2 s 2 ← ← ← − − − probabilistic automata s 2 note that for totally non-observable POMDP: observation-based function = infinite word = = = = = � � � � � � scheduler D : N → Act D : N → Act D : N → Act over Act Act Act 87 / 161

  68. Undecidability results for POMDP pomdp-11 extreme cases of an POMDP: • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 iff s 1 = s 2 s 1 = s 2 s 1 = s 2 ← ← ← − − − standard MDP • s 1 ∼ s 2 s 1 ∼ s 2 s 1 ∼ s 2 for all s 1 s 1 s 1 , s 2 s 2 ← ← ← − − − probabilistic automata s 2 note that for totally non-observable POMDP: observation-based function = infinite word = = = = = � � � � � � scheduler D : N → Act D : N → Act D : N → Act over Act Act Act undecidability results for PFA carry over to POMDP maximum probabilistic non-emptiness reachability problem problem for = = = � � � Pr obs “does Pr obs Pr obs PFA max ( ♦ F ) > p hold ? ” max ( ♦ F ) > p max ( ♦ F ) > p 88 / 161

  69. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. 89 / 161

  70. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. • There is no even no approximation algorithm for reachability objectives. [Paz’71], [Madani/Hanks/Condon’99], [Giro/d’Argenio’07] 90 / 161

  71. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. • There is no even no approximation algorithm for reachability objectives. • The model checking problem for POMDP and several qualitative properties is undecidable, e.g., repeated reachability with positive probability “does Pr obs Pr obs Pr obs max ( �♦ F ) max ( �♦ F ) max ( �♦ F ) > 0 > 0 > 0 hold ? ” = �♦ �♦ �♦ � = = “infinitely often” � � 91 / 161

  72. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. • There is no even no approximation algorithm for reachability objectives. • The model checking problem for POMDP and several qualitative properties is undecidable, e.g., repeated reachability with positive probability “does Pr obs Pr obs Pr obs max ( �♦ F ) max ( �♦ F ) max ( �♦ F ) > 0 > 0 > 0 hold ? ” Many interesting verification problems for distributed probabilistic multi-agent systems are undecidable. 92 / 161

  73. Undecidability results for POMDP pomdp-30-new • The model checking problem for POMDP and quantitative properties is undecidable, e.g., probabilistic reachability properties. • There is no even no approximation algorithm for reachability objectives. • The model checking problem for POMDP and several qualitative properties is undecidable, e.g., repeated reachability with positive probability “does Pr obs Pr obs Pr obs max ( �♦ F ) max ( �♦ F ) max ( �♦ F ) > 0 > 0 > 0 hold ? ” ... already holds for totally non-observable POMDP � �� � probabilistic B¨ uchi automata 93 / 161

  74. Remind: LTL model checking for MDP pomdp-50 requirements MDP M M M LTL formula ϕ ϕ ϕ 2exp deterministic automaton A A A probabilistic reachability analysis in the product-MDP M × A M × A M × A 94 / 161

  75. PA rather than DA ? pomdp-50 requirements MDP M M M LTL formula ϕ ϕ ϕ ? probabilistic automaton A A A probabilistic reachability analysis in the product-MDP M × A M × A M × A 95 / 161

  76. PA rather than DA ? pomdp-50 requirements MDP M M M LTL formula ϕ ϕ ϕ ? probabilistic automaton A A A probabilistic reachability analysis in the product-MDP M × A M × A M × A impossible, due to undecidability results 96 / 161

  77. Decidability results for POMDP pomdp-15-fm 97 / 161

  78. Decidability results for POMDP pomdp-15-ifm The model checking problem for POMDP and several qualitative properties is decidable, e.g., • invariance with positive probability “does Pr obs Pr obs Pr obs max ( � F ) max ( � F ) max ( � F ) > 0 > 0 > 0 hold ? ” • almost-sure reachability Pr obs “does Pr obs Pr obs max ( ♦ F ) max ( ♦ F ) max ( ♦ F ) = 1 = 1 = 1 hold ? ” • almost-sure repeated reachability “does Pr obs Pr obs Pr obs max ( �♦ F ) = 1 max ( �♦ F ) max ( �♦ F ) = 1 = 1 hold ? ” • persistence with positive probability Pr obs “does Pr obs Pr obs max ( ♦� F ) max ( ♦� F ) max ( ♦� F ) > 0 > 0 > 0 hold ? ” 98 / 161

  79. Decidability results for POMDP pomdp-15-ifm The model checking problem for POMDP and several qualitative properties is decidable, e.g., • invariance with positive probability “does Pr obs Pr obs Pr obs max ( � F ) max ( � F ) max ( � F ) > 0 > 0 > 0 hold ? ” • almost-sure reachability Pr obs “does Pr obs Pr obs max ( ♦ F ) max ( ♦ F ) max ( ♦ F ) = 1 = 1 hold ? ” = 1 • almost-sure repeated reachability “does Pr obs Pr obs Pr obs max ( �♦ F ) = 1 max ( �♦ F ) max ( �♦ F ) = 1 = 1 hold ? ” • persistence with positive probability Pr obs “does Pr obs Pr obs max ( ♦� F ) max ( ♦� F ) max ( ♦� F ) > 0 > 0 > 0 hold ? ” algorithms use a certain powerset construction 99 / 161

  80. Probabilistic Automata and Verification overview-conc • Markov decision processes (MDP) and quantitative analysis against path events • partial order reduction for MDP • partially-oberservable MDP ← − • conclusions ← ← − − 100 / 161

Recommend


More recommend