on minimizing the maximum color for the 1 2 3 conjecture
play

On Minimizing the Maximum Color for the 1-2-3 Conjecture Julien - PowerPoint PPT Presentation

On Minimizing the Maximum Color for the 1-2-3 Conjecture Julien Bensmail, Bi Li, Binlong Li, Nicolas Nisse Universit e C ote dAzur, Inria, CNRS, I3S, France COATI seminar@home, April 17th, 2020 1/17 J. Bensmail, B. Li, B. Li, N.Nisse


  1. On Minimizing the Maximum Color for the 1-2-3 Conjecture Julien Bensmail, Bi Li, Binlong Li, Nicolas Nisse Universit´ e Cˆ ote d’Azur, Inria, CNRS, I3S, France COATI seminar@home, April 17th, 2020 1/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  2. Vertex Coloration and Edge Labeling k -Vertex Coloring of G = ( V , E ): c : V → { 1 , · · · , k } . proper: adjacent vertices have distinct colors: for every uv ∈ E , c ( u ) � = c ( v ). 5 2 1 1 1 1 3 2 PROPER (k=5) NOT PROPER (k=2) Chromatic number χ ( G ) χ ( G ) = min { k | G has a k proper coloring } ω ( G ) ≤ χ ( G ) ≤ ∆( G ) + 1 2/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  3. Vertex Coloration and Edge Labeling k -Vertex Coloring of G = ( V , E ): c : V → { 1 , · · · , k } . proper: adjacent vertices have distinct colors: for every uv ∈ E , c ( u ) � = c ( v ). 5 2 1 1 1 1 3 2 PROPER (k=5) NOT PROPER (k=2) Chromatic number χ ( G ) χ ( G ) = min { k | G has a k proper coloring } ω ( G ) ≤ χ ( G ) ≤ ∆( G ) + 1 k -Edge labeling: ℓ : E → { 1 , · · · , k } Induced vertex-coloring c ℓ : V → N for every v ∈ V , c ℓ ( v ) = � ℓ ( uv ). u ∈ N ( v ) 3 1 3 13 PROPER (k=10) 10 2 2 NOT PROPER 4 17 3 k=10 5 12 7 4 10 3 14 13 2/17 Find a k -labeling inducing proper coloring with k << χ ( G )? [Karo´ nski,Luczak,Thomason,04] J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  4. Edge Labeling: first examples k -Edge labeling: ℓ : E → { 1 , · · · , k } Induced vertex-coloring c ℓ : V → N for every v ∈ V , c ℓ ( v ) = � ℓ ( uv ). u ∈ N ( v ) K4 K2 G K3 C5 C4 Let’s play : for each of the 6 graphs, give a k -labeling inducing a proper coloring COATIQUIZZ: I count the points!! 3/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  5. Edge Labeling: first examples k -Edge labeling: ℓ : E → { 1 , · · · , k } Induced vertex-coloring c ℓ : V → N for every v ∈ V , c ℓ ( v ) = � ℓ ( uv ). u ∈ N ( v ) K4 K2 G ??? K3 C5 C4 Let’s play : for each of the 6 graphs, give a k -labeling inducing a proper coloring COATIQUIZZ: I count the points!! No k -proper labeling of K 2 :( 3/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  6. Edge Labeling: first examples k -Edge labeling: ℓ : E → { 1 , · · · , k } Induced vertex-coloring c ℓ : V → N for every v ∈ V , c ℓ ( v ) = � ℓ ( uv ). u ∈ N ( v ) 1 1 K4 4 1 1 K2 1 3 G ??? 1 K3 1 1 2 1 C5 C4 Let’s play : for each of the 6 graphs, give a k -labeling inducing a proper coloring COATIQUIZZ: I count the points!! No k -proper labeling of K 2 :( locally irregular graph: for every uv ∈ E , deg ( u ) � = deg ( v ). locally irregular ⇔ 1-proper-labeling. 3/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  7. Edge Labeling: first examples k -Edge labeling: ℓ : E → { 1 , · · · , k } Induced vertex-coloring c ℓ : V → N for every v ∈ V , c ℓ ( v ) = � ℓ ( uv ). u ∈ N ( v ) 1 1 K4 4 3 1 1 K2 1 3 G 1 2 ??? 1 K3 1 1 4 3 5 2 1 C5 C4 Let’s play : for each of the 6 graphs, give a k -labeling inducing a proper coloring COATIQUIZZ: I count the points!! No k -proper labeling of K 2 :( locally irregular graph: for every uv ∈ E , deg ( u ) � = deg ( v ). locally irregular ⇔ 1-proper-labeling. 3/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  8. Edge Labeling: first examples k -Edge labeling: ℓ : E → { 1 , · · · , k } Induced vertex-coloring c ℓ : V → N for every v ∈ V , c ℓ ( v ) = � ℓ ( uv ). u ∈ N ( v ) 1 1 K4 4 3 4 1 3 1 1 K2 1 2 1 3 G 1 2 ??? 1 1 1 K3 1 1 4 3 5 2 1 5 3 6 C5 C4 Let’s play : for each of the 6 graphs, give a k -labeling inducing a proper coloring COATIQUIZZ: I count the points!! No k -proper labeling of K 2 :( locally irregular graph: for every uv ∈ E , deg ( u ) � = deg ( v ). locally irregular ⇔ 1-proper-labeling. 3/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  9. Edge Labeling: first examples k -Edge labeling: ℓ : E → { 1 , · · · , k } Induced vertex-coloring c ℓ : V → N for every v ∈ V , c ℓ ( v ) = � ℓ ( uv ). u ∈ N ( v ) 1 1 K4 4 3 4 1 3 1 1 K2 1 2 1 3 G 1 2 ??? 1 1 1 K3 1 1 4 3 5 2 1 5 3 6 3 1 2 C5 C4 1 2 4 2 3 Let’s play : for each of the 6 graphs, give a k -labeling inducing a proper coloring COATIQUIZZ: I count the points!! No k -proper labeling of K 2 :( locally irregular graph: for every uv ∈ E , deg ( u ) � = deg ( v ). locally irregular ⇔ 1-proper-labeling. 3/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  10. Edge Labeling: first examples k -Edge labeling: ℓ : E → { 1 , · · · , k } Induced vertex-coloring c ℓ : V → N for every v ∈ V , c ℓ ( v ) = � ℓ ( uv ). u ∈ N ( v ) 1 K4 1 4 3 4 1 3 1 K2 1 1 1 3 2 1 2 G ??? 1 1 K3 1 1 1 4 3 5 2 1 5 3 6 4 1 2 1 3 1 2 3 C5 5 3 C4 1 2 2 2 4 2 3 4 Let’s play : for each of the 6 graphs, give a k -labeling inducing a proper coloring COATIQUIZZ: I count the points!! No k -proper labeling of K 2 :( locally irregular graph: for every uv ∈ E , deg ( u ) � = deg ( v ). locally irregular ⇔ 1-proper-labeling. 3/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  11. Neighbour-sum-distinguishing chromatic index χ � ( G ) G has a proper k -labeling (for some k ∈ N ) ⇔ no connected component of G is K 2 . If |V|>3. x with max degree. Induction on |V|>2 for connected graphs. if deg(x)=2, ok. Else let G'=G\x Cases |V|=3 M x G' 3 k-proper labeling M 1 1 3 2 2 >=3M max color = M 2 1 M 4 3 5 (some "details" are M skipped) 4/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  12. Neighbour-sum-distinguishing chromatic index χ � ( G ) G has a proper k -labeling (for some k ∈ N ) ⇔ no connected component of G is K 2 . If |V|>3. x with max degree. Induction on |V|>2 for connected graphs. if deg(x)=2, ok. Else let G'=G\x Cases |V|=3 M x G' 3 k-proper labeling M 1 1 3 2 2 >=3M max color = M 2 1 M 4 3 5 (some "details" are M skipped) χ � ( G ) = min { k | G has a k-proper-labeling } well defined for all graphs without K 2 as connected component (nice graphs). History. For every nice graph G : χ � ( G ) ≤ 30 [Addario-Berry,Dalal,McDiarmid,Reed,Thomason 2007] χ � ( G ) ≤ 5 [Kalkowski,Karo´ nski,Pfender 2010] 1-2-3 Conjecture : for every nice graph G , χ � ( G ) ≤ 3 [Karo´ nski,Luczak,Thomason 2004] Complexity Deciding if χ � ( G ) ≤ 2 is NP-complete in cubic graphs. [Ahadi,Dehghan,Sadegh 2013] 4/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  13. 1-2-3 Conjecture holds in various graph classes Locally irregular graphs (no adjacent vertices have same degree) χ � ( G ) = 1 iff G is locally irregular. Trees with at least 2 edges [Chang,Lu,Wu,Yu 2011] For every nice tree T , χ � ( T ) ≤ 2. Cycles C n with n ≥ 3 vertices χ � ( C n ) = 2 if n ≡ 0 mod 4 and χ � ( C n ) = 3 otherwise. Complete graphs K n with n ≥ 3 vertices χ � ( K n ) = 3. Nice bipartite graphs [Thomassen,Wu,Zhang 2016] For every nice bipartite graph B , χ � ( B ) ≤ 3 Characterization of bipartite graphs B with χ � ( B ) = 3 (odd multi cacti) Nice d -regular graphs (all vertices of degree d ) [Przybylo 2019] For every nice d regular graph G , χ � ( G ) ≤ 4, and χ � ( G ) ≤ 3 if d ≥ 10 8 . 5/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  14. What next? Play with variants Let G be a nice graph and k ≥ χ � ( G ). Find a k -proper labeling of G such that: Minimize the number of distinct colors of vertices [Baudon,Bensmail,Hocquard,Senhaji,Sopena 2019] Minimize the maximum color of the vertices (this talk) [Bensmail,Li,Li,N.] Minimize the total sum of the colors of the vertices [Bensmail,Fioravantes,N., IWOCA 2020] Equitable labeling ℓ : E → { 1 , · · · , k } is equitable if, for all i � = j ≤ k , |{ e ∈ E | ℓ ( e ) = i }| and |{ e ∈ E | ℓ ( e ) = j }| differ by at most one. [Baudon,Pil´ sniak,Przybylo,Senhaji,Sopena,Woz´ nia 2017] [Bensmail,Fioravantes,McInerney,N.] COATIQUIZZ: Find the intruder (you’ll get one point) 6/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

  15. Proper labeling with min. maximum sum (color) Let k ≥ χ � ( G ). k -proper-Edge labeling: ℓ : E → { 1 , · · · , k } . For every vw ∈ E , c ℓ ( v ) = � ℓ ( uv ) � = � ℓ ( uw ) = c ℓ ( w ). u ∈ N ( v ) u ∈ N ( w ) mS ( G , ℓ ) = max v ∈ V c ℓ ( v ). 7/17 J. Bensmail, B. Li, B. Li, N.Nisse On Minimizing the Maximum Color for the 1-2-3 Conjecture

Recommend


More recommend