on bregman voronoi diagrams
play

On Bregman Voronoi Diagrams Jean-Daniel Boissonnat 2 Richard Nock 3 - PowerPoint PPT Presentation

On Bregman Voronoi Diagrams Jean-Daniel Boissonnat 2 Richard Nock 3 Frank Nielsen 1 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory Frank.Nielsen@acm.org 2 INRIA Sophia-Antipolis Geometrica


  1. On Bregman Voronoi Diagrams Jean-Daniel Boissonnat 2 Richard Nock 3 Frank Nielsen 1 1 Sony Computer Science Laboratories, Inc. Fundamental Research Laboratory Frank.Nielsen@acm.org 2 INRIA Sophia-Antipolis Geometrica Jean-Daniel.Boissonnat@sophia.inria.fr 3 University of Antilles-Guyanne CEREGMIA Richard.Nock@martinique.univ-ag.fr July 2006 — January 2007 F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  2. Ordinary Voronoi Diagrams • Voronoi diagram Vor ( S ) s.t. p 4 = { x ∈ R d | || p i x || ≤ || p j x || ∀ p j ∈ S} Vor ( p i ) def p 5 p 1 p 7 • Voronoi sites (static view). p 6 p 6 Vor( p 6 ) • Voronoi generators (dynamic view). p 3 p 2 → Ren´ e Descartes, 17th century. → Partition the Euclidean space E d wrt �� d i = 1 x 2 the Euclidean distance || x || 2 = i . F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  3. Generalizing Voronoi Diagrams Voronoi diagrams widely studied in comp. geometry [AK’00]: Manhattan (taxi-cab) diagram ( L 1 norm): || x || 1 = � d i = 1 | x i | , Affine diagram (power distance): || x − c i || 2 − r 2 i , � Anisotropic diagram (quad. dist.): ( x − c i ) T Q i ( x − c i ) , Apollonius diagram (circle distance): || x − c i || − r i , M¨ obius diagram (weighted distance): λ i || x − c i || − µ i , Abstract Voronoi diagrams [Klein’89], etc. Taxi-cab diagram Power diagram Anisotropic diagram Apollonius diagram F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  4. Non-Euclidean Voronoi diagrams Hyperbolic Voronoi: Poincar´ e disk [B+’96], Poincar´ e half-plane [OT’96], etc. Kullback-Leibler divergence (statistical Voronoi diagrams) [OI’96] & [S+’98] Divergence between two statistical distributions x p ( x ) log p ( x ) � KL ( p || q ) = q ( x ) d x [relative entropy] Riemannian Voronoi diagrams: geodesic length (aka geodesic Voronoi diagrams) [LL ’00] Hyperbolic Voronoi (Poincar´ e) Hyperbolic Voronoi (Klein) Riemannian Voronoi F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  5. Bregman divergences F a strictly convex and differentiable function defined over a convex set domain X D F ( p , q ) = F ( p ) − F ( q ) − � p − q , ∇ F ( q ) � not a distance (not necessarily symmetric nor does triangle inequality hold) F D F ( p , q ) H q x q p F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  6. Example: The squared Euclidean distance F ( x ) = x 2 : strictly convex and differentiable over R d (Multivariate F ( x ) = P d i = 1 x 2 i ) D F ( p , q ) = F ( p ) − F ( q ) − � p − q , ∇ F ( q ) � p 2 − q 2 − � p − q , 2 q � = � p − q � 2 = Voronoi diagram equivalence classes Since Vor ( S ; d 2 ) = Vor ( S ; d 2 2 ) , the ordinary Voronoi diagram is interpreted as a Bregman Voronoi diagram. (Any strictly monotone function f of d 2 yields the same ordinary Voronoi diagram: Vor ( S ; d 2 ) = Vor ( S ; f ( d 2 )) .) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  7. Bregman divergences for probability distributions � F ( p ) = p ( x ) log p ( x ) d x (Shannon entropy) (Discrete distributions F ( p ) = P x p ( x ) log p ( x ) d x ) � D F ( p , q ) = ( p ( x ) log p ( x ) − q ( x ) log q ( x ) −� p ( x ) − q ( x ) , log q ( x ) + 1 � )) d x p ( x ) log p ( x ) � = q ( x ) d x ( KL divergence ) Kullback-Leiber divergence also known as: relative entropy or I -divergence. (Defined either on the probability simplex or extended on the full positive quadrant.) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  8. Bregman divergences: A versatile measure Bregman divergences are versatile , suited to mixed type data. (Build multivariate divergences dimensionwise using elementary univariate divergences.) Fact (Linearity) Bregman divergence is a linear operator: ∀ F 1 ∈ C ∀ F 2 ∈ C D F 1 + λ F 2 ( p || q ) = D F 1 ( p || q ) + λ D F 2 ( p || q ) for any λ ≥ 0 . Fact (Equivalence classes) Let G ( x ) = F ( x ) + � a , x � + b be another strictly convex and differentiable function, with a ∈ R d and b ∈ R . Then D F ( p || q ) = D G ( p || q ) . ( For Voronoi diagrams, relax the classes to any monotone function of D F : relative vs absolute divergence.) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  9. Bregman divergences for sound processing F ( p ) = − � x log p ( x ) d x (Burg entropy) x ( p ( x ) q ( x ) − log p ( x ) � D F ( p , q ) = q ( x ) − 1 ) d x (Itakura-Saito) Convexity & Bregman balls D F ( p || q ) is convex in its first argument p but not necessarily in its second argument q . ball ′ ( c , r ) = { x | D F ( c , x ) ≤ r } ball ( c , r ) = { x | D F ( x , c ) ≤ r } Superposition of I.-S. balls F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  10. Dual divergence Convex conjugate Unique convex conjugate function G ( = F ∗ ) obtained by the Legendre transformation: G ( y ) = sup x ∈X {� y , x � − F ( x ) } . ∇ G ( y ) = ∇ ( � y , x � − F ( x )) = 0 → y = ∇ F ( x ) . (thus we have x = ∇ F − 1 ( y ) ) D F ( p || q ) = F ( p ) − F ( q ) − � p − q , q ′ � with ( q ′ = ∇ F ( q ) ). F ∗ ( = G ) is a Bregman generator function such that ( F ∗ ) ∗ = F . Dual Bregman divergence D F ( p || q ) = F ( p ) + F ∗ ( q ′ ) − � p , q ′ � = D F ∗ ( q ′ || p ′ ) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  11. Convex conjugate and Dual Bregman divergence Legendre transformation: F ∗ ( x ′ ) = − F ( x ) + � x , x ′ � . X f = ∇ F Y = X ′ x 2 y 2 = x ′ D F ( x 1 , x 2 ) 2 x 1 D F ∗ ( x ′ 2 , x ′ 1 ) y 1 = x ′ 1 F g = ∇ F − 1 G = F ∗ F ( x 1 ) − F ( x 2 ) − � x 1 − x 2 , x ′ D F ( x 1 , x 2 ) = 2 � − F ∗ ( x ′ 1 ) + � x 1 , x ′ 1 � + F ∗ ( x ′ 2 ) − � x 1 , x ′ = 2 � D F ∗ ( x ′ 2 , x ′ = 1 ) F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  12. Examples of dual divergences Exponential loss ← → unnormalized Shannon entropy. → G ( y ) = y log y − y = F ∗ ( x ′ ) . F ( x ) = exp ( x ) ← F ( x ) = exp x D F ( x 1 || x 2 ) = exp x 1 − exp x 2 − ( x 1 − x 2 ) exp x 2 f ( x ) = exp x = y D G ( y 1 || y 2 ) = y 1 log y 1 G ( y ) = y log y − y y 2 + y 2 − y 1 g ( y ) = log y = x Logistic loss ← → Bernouilli-like entropy. F ( x ) = x log x + ( 1 − x ) log ( 1 − x ) ← → G ( y ) = log ( 1 + exp ( y )) D F ( x 1 || x 2 ) = log 1 + exp x 1 exp x 2 exp x F ( x ) = log ( 1 + exp x ) 1 + exp x 2 − ( x 1 − x 2 ) f ( x ) = 1 + exp x = y 1 + exp x 2 D G ( y 1 || y 2 ) = y 1 log y 1 y 2 + ( 1 − y 1 ) log 1 − y 1 y y G ( y ) = y log 1 − y + log ( 1 − y ) g ( y ) = log 1 − y = x 1 − y 2 F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  13. Bregman (Dual) divergences Dual divergences have gradient entries swapped in the table: (Because of equivalence classes, it is sufficient to have f = Θ( g ) .) Dom. Function F Gradient Inv. grad. Divergence (or dual G = F ∗ ) ( f = g − 1 ) ( g = f − 1 ) X D F ( p , q ) Squared function ⋆ Squared loss (norm) R x 2 x ( p − q ) 2 2 x 2 R + Unnorm. Shannon entropy Kullback-Leibler div. (I-div.) p log p x log x − x log x exp ( x ) q − p + q Exponential Exponential loss R exp x exp x log x exp ( p ) − ( p − q + 1 ) exp ( q ) R + ∗ Burg entropy ⋆ Itakura-Saito divergence p q − log p − 1 − 1 − log x q − 1 x x [ 0 , 1 ] Bit entropy Logistic loss exp x p log p q + ( 1 − p ) log 1 − p x x log x + ( 1 − x ) log ( 1 − x ) log 1 − x 1 + exp x 1 − q Dual bit entropy Dual logistic loss exp x log 1 + exp p exp q x R log ( 1 + exp x ) log 1 + exp q − ( p − q ) 1 + exp x 1 − x 1 + exp q [ − 1 , 1 ] Hellinger ⋆ Hellinger 1 − pq ♣ x x ♣ − 1 − x 2 1 − q 2 − 1 − p 2 q q q 1 − x 2 1 + x 2 − 1 .) (Self-dual divergences are marked with an asterisk ⋆ . Note that f = ∇ F and g = ∇ F F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

  14. Self-dual Bregman divergences: Legendre duals Legendre duality: Consider functions and domains: ( F , X ) ↔ ( F ∗ , X ∗ ) Squared Euclidean distance: 2 � x , x � is self-dual on X = X ∗ = R d . F ( x ) = 1 Itakura-Saito divergence. F ( x ) = − � log x i . Domains are X = R + ∗ and X ∗ = R − ∗ ( G = F ∗ = − log ( − x ) ) q − 1 = q ′ p ′ − log q ′ ( D F ( p || q ) = p q − log p p ′ − 1 = D F ( q ′ || p ′ ) with q ′ = − 1 q and p ′ = − 1 p ) It can be difficult to compute for a given F its convex conjugate: ∇ F − 1 � (eg, F ( x ) = x log x ; Liouville’s non exp-log functions). F. Nielsen, J.-D. Boissonnat and R. Nock On Bregman Voronoi Diagrams

Recommend


More recommend