on approximating the covering radius and finding dense
play

On Approximating the Covering Radius and Finding Dense Lattice - PowerPoint PPT Presentation

On Approximating the Covering Radius and Finding Dense Lattice Subspaces Daniel Dadush Centrum Wiskunde & Informatica (CWI) ICERM April 2018 Outline 1. Integer Programming and the Kannan-Lovsz (KL) Conjecture. 2. 2 KL Conjecture


  1. On Approximating the Covering Radius and Finding Dense Lattice Subspaces Daniel Dadush Centrum Wiskunde & Informatica (CWI) ICERM April 2018

  2. Outline 1. Integer Programming and the Kannan-LovΓ‘sz (KL) Conjecture. 2. β„“ 2 KL Conjecture & the Reverse Minkowski Conjecture. 3. Finding dense lattice subspaces.

  3. Integer Programming (IP) min𝑑𝑦 𝑑 s.t. 𝐡𝑦 ≀ 𝑐 𝐿 𝑦 πœ— β„€ π‘œ π‘œ variables, 𝑛 constraints Open Question: Is there a 2 𝑃(π‘œ) time algorithm? First result: 2 𝑃(π‘œ 2 ) [Lenstra `83] Best known complexity: π‘œ 𝑃(π‘œ) [Kannan `87]

  4. Main Dichotomy 𝜈 𝐿, β„€ π‘œ ≔ smallest scaling 𝑑 such that every shift 𝑑𝐿 + 𝑒 contains an integer point. 𝐿 β„€ 2 Either covering radius 𝜈 𝐿, β„€ π‘œ ≀ 1 .

  5. Main Dichotomy 𝜈 𝐿, β„€ π‘œ ≔ smallest scaling 𝑑 such that every shift 𝑑𝐿 + 𝑒 contains an integer point. 𝐿 β„€ 2 Either covering radius 𝜈 𝐿, β„€ π‘œ ≀ 1 .

  6. Main Dichotomy 𝜈 𝐿, β„€ π‘œ ≔ smallest scaling 𝑑 such that every shift 𝑑𝐿 + 𝑒 contains an integer point. 𝐿 β„€ 2 Either covering radius 𝜈 𝐿, β„€ π‘œ ≀ 1 .

  7. Main Dichotomy 𝜈 𝐿, β„€ π‘œ ≔ smallest scaling 𝑑 such that every shift 𝑑𝐿 + 𝑒 contains an integer point. 𝜈 𝐿, β„€ 2 = 2 2 3 𝐿 3 β„€ 2 Either covering radius 𝜈 𝐿, β„€ π‘œ ≀ 1 .

  8. Main Dichotomy Can find integer point in 2 𝑃(π‘œ) time [D. 12] 𝐿 β„€ 2 Either covering radius 𝜈 𝐿, β„€ π‘œ ≀ 1 .

  9. Main Dichotomy Or 𝐿 is β€œflat”: Projection on 𝑧 -axis 𝐿 𝑄 = (0 1) β„€ 2 There exists rank 𝑙 β‰₯ 1 integer projection 𝑄 ∈ β„€ π‘œΓ—π‘™ 1 𝑙 is small . such vol 𝑙 𝑄𝐿

  10. Main Dichotomy Or 𝐿 is β€œflat”: Projection on 𝑧 -axis 𝐿 𝑄 = (0 1) β„€ 2 There exists rank 𝑙 β‰₯ 1 integer projection 𝑄 ∈ β„€ π‘œΓ—π‘™ 1 𝑙 is small . such vol 𝑙 𝑄𝐿

  11. Main Dichotomy Or 𝐿 is β€œflat”: Recurse on β‰ˆ vol k PK subproblems [D. 12] 𝐿 β„€ 2 There exists rank 𝑙 β‰₯ 1 integer projection 𝑄 ∈ β„€ π‘œΓ—π‘™ 1 𝑙 is small . such vol 𝑙 𝑄𝐿

  12. Duality Relation 1 1 ≀ 𝜈 𝐿, β„€ π‘œ 𝑙 ≀ ? min vol 𝑙 𝑄𝐿 π‘„βˆˆβ„€ π‘™Γ—π‘œ 𝑠𝑙 𝑄 =𝑙β‰₯1 β€œEasy” side β€œHard” side Either covering radius 𝜈(𝐿, β„€ π‘œ ) is small or 𝐿 is β€œflat”.

  13. Khinchine Flatness Theorem 𝐿 vol 1 (𝑄𝐿) ≀ ΰ·© O(π‘œ Ξ€ 1 ≀ 𝜈 𝐿, β„€ π‘œ 4 3 ) min π‘„βˆˆβ„€ 1Γ—π‘œ 𝑠𝑙 𝑄 =1 [ Khinchine `48, Babai `86, Hastad `86, Lenstra-Lagarias- Schnorr `87, Kannan-Lovasz `88, Banaszczyk `93-96, Banaszczyk-Litvak-Pajor-Szarek `99, Rudelson `00 ]

  14. Kannan-LovΓ‘sz Flatness Theorem 𝐿 1 1 ≀ 𝜈 𝐿, β„€ π‘œ 𝑙 ≀ π‘œ min vol 𝑙 𝑄𝐿 π‘„βˆˆβ„€ π‘™Γ—π‘œ 𝑠𝑙 𝑄 =𝑙β‰₯1 [ Kannan `87, Kannan-LovΓ‘sz `88 ]

  15. Kannan-LovΓ‘sz (KL) Conjecture 𝐿 1 1 ≀ 𝜈 𝐿, β„€ π‘œ 𝑙 ≀ 𝑃 log π‘œ β€Ό min vol 𝑙 𝑄𝐿 π‘„βˆˆβ„€ π‘™Γ—π‘œ 𝑠𝑙 𝑄 =𝑙β‰₯1

  16. Faster Algorithm for IP? 1 1 ≀ 𝜈 𝐿, β„€ π‘œ 𝑙 ≀ 𝑃 log π‘œ min vol 𝑙 𝑄𝐿 π‘„βˆˆβ„€ π‘™Γ—π‘œ 𝑠𝑙 𝑄 =𝑙β‰₯1 D. `12: Assuming KL conjecture + 𝑄 computable in (log π‘œ) 𝑃(π‘œ) time then there is log π‘œ 𝑃(π‘œ) time algorithm for IP.

  17. β„“ 2 Kannan-LovΓ‘sz Conjecture Does the conjecture hold for ellipsoids? 𝐹 0 β„€ π‘œ π‘œ An ellipsoid is 𝐹 = π‘ˆπΆ 2

  18. β„“ 2 Kannan-LovΓ‘sz Conjecture Answer: YES* [Regev-S.Davidowitz 17] 𝐹 0 β„€ π‘œ * up to polylogarithmic factors

  19. β„“ 2 Kannan-LovΓ‘sz Conjecture Can we compute the projection P? 𝐹 0 β„€ π‘œ THIS TALK: YES, in 2 𝑃(π‘œ) time.

  20. Outline 1. Integer Programming and the Kannan-LovΓ‘sz (KL) Conjecture. 2. β„“ 2 KL Conjecture & the Reverse Minkowski Conjecture. 3. Finding dense lattice subspaces.

  21. β„“ 2 Kannan-LovΓ‘sz Conjecture Easier to think of Euclidean ball vs general lattice. π‘œ π‘ˆπΉ = 𝐢 2 0 β„’ = π‘ˆβ„€ π‘œ

  22. Lattices A lattice β„’ βŠ† ℝ π‘œ is 𝐢℀ π‘œ for a basis 𝐢 = 𝑐 1 , … , 𝑐 π‘œ . β„’(𝐢) denotes the lattice generated by 𝐢 . 𝑐 2 𝑐 1 𝑐 1 Note: a lattice has many equivalent bases. 𝑐 2 𝑐 2 β„’

  23. Lattices A lattice β„’ βŠ† ℝ π‘œ is 𝐢℀ π‘œ for a basis 𝐢 = 𝑐 1 , … , 𝑐 π‘œ . β„’(𝐢) denotes the lattice generated by 𝐢 . 𝑐 1 The determinant of β„’ is | det 𝐢 | . 𝑐 2 β„’

  24. Lattices A lattice β„’ βŠ† ℝ π‘œ is 𝐢℀ π‘œ for a basis 𝐢 = 𝑐 1 , … , 𝑐 π‘œ . β„’(𝐢) denotes the lattice generated by 𝐢 . 𝑐 1 The determinant of β„’ is | det 𝐢 | . Equal to volume of 𝑐 2 any tiling set. β„’

  25. β„“ 2 Covering Radius π‘œ , β„’ 𝜈 β„’ ≔ 𝜈 𝐢 2 Distance of farthest point to the lattice β„’ . 𝜈 𝒲 β„’ Voronoi cell 𝒲 ≔ all points closer to 0

  26. Volumetric Lower Bounds π‘œ 𝜈 β„’ vol π‘œ 𝐢 2 β‰₯ vol n 𝒲 = det(β„’) 𝜈 𝒲 β„’ Voronoi cell 𝒲 ≔ all points closer to 0

  27. Volumetric Lower Bounds π‘œ βˆ’1 1 π‘œ det β„’ 𝜈(β„’) β‰₯ vol n 𝐢 2 π‘œ 𝜈 𝒲 β„’ Voronoi cell 𝒲 ≔ all points closer to 0

  28. Volumetric Lower Bounds 1 𝜈(β„’) β‰Ώ π‘œ det β„’ π‘œ 𝜈 𝒲 β„’ Voronoi cell 𝒲 ≔ all points closer to 0

  29. Volumetric Lower Bounds 𝜈 β„’ β‰₯ 𝜈 β„’ ↓𝑋 𝜈 𝜈 ↓𝑋 𝑋 β„’ β„’ ↓𝑋 projection onto 𝑋

  30. Volumetric Lower Bounds 1 𝜈 β„’ β‰₯ 𝜈 β„’ ↓𝑋 ≳ 𝑙 det β„’ ↓𝑋 𝑙 𝜈 𝜈 ↓𝑋 𝑋 β„’ β„’ ↓𝑋 projection onto 𝑋 dim(𝑋) = 𝑙 β‰₯ 1

  31. Volumetric Lower Bounds 1 𝜈 β„’ ≳ max 𝑙 det β„’ ↓𝑋 𝑙 dim 𝑋 =𝑙β‰₯1 𝜈 𝜈 ↓𝑋 𝑋 β„’ β„’ ↓𝑋 projection onto 𝑋 dim(𝑋) = 𝑙 β‰₯ 1

  32. β„“ 2 Kannan-LovΓ‘sz Conjecture Define 𝐷 𝐿𝑀,2 (π‘œ) to be smallest number such that 1 𝜈 β„’ ≀ 𝐷 𝐿𝑀,2 (π‘œ) max 𝑙 det β„’ ↓𝑋 𝑙 dim 𝑋 =𝑙β‰₯1 for all lattices of dimension at most π‘œ . 𝐷 𝐿𝑀,2 π‘œ = Ξ©( log π‘œ) 1 1 Lower bound for β„’ with basis 𝑓 1 , 2 𝑓 2 , … , π‘œ 𝑓 π‘œ .

  33. KL Bounds 1 𝜈 β„’ ≀ 𝐷 𝐿𝑀,2 (π‘œ) max 𝑙 det β„’ ↓𝑋 𝑙 dim 𝑋 =𝑙β‰₯1 π‘œ Kannan-LovΓ‘sz `88: D. Regev `16: log 𝑃(1) π‘œ Assuming Reverse Minkowski Conjecture. 3 2 π‘œ Regev, S.Davidowitz `17: log Ξ€ Reverse Minkowski Conjecture is proved!

  34. Our Results π‘œ dimensional lattice β„’ ≔ β„’(𝐢) 1. Can compute subspace 𝑋 , dim 𝑋 = 𝑙 β‰₯ 1 1 𝜈 β„’ ≀ 𝑃(log 2.5 π‘œ ) 𝑙 det β„’ ↓𝑋 𝑙 in 2 𝑃(π‘œ) time with high probability. Prior work: π‘œ in 2 𝑃(π‘œ) time. Kannan LovΓ‘sz `88: D. Micciancio `13: best subspace in π‘œ 𝑃(π‘œ 2 ) time.

  35. Our Results π‘œ dimensional lattice β„’ ≔ β„’(𝐢) 2. Can combine lower bounds over different subspaces to certify 𝜈 𝑀 up to the slicing constant 𝑀 π‘œ for β€œstable” Voronoi cells*. 𝒲 * If vol n 𝒲 = 1 𝐼 can find hyperplane 𝐼 s.t. vol nβˆ’1 𝒲 ∩ 𝐼 = Ξ©( 1 π‘€π‘œ )

  36. Our Results π‘œ dimensional lattice β„’ ≔ β„’(𝐢) 2. Can combine lower bounds over different subspaces to certify 𝜈 𝑀 up to the slicing constant 𝑀 π‘œ for β€œstable” Voronoi cells*. 𝒲 Slicing Conjecture: 𝐼 𝑀 π‘œ = 𝑃(1) for all convex bodies! For β€œstable” Voronoi cells: 𝑀 π‘œ = 𝑃(log π‘œ) [RS `17]

  37. Notation 𝑁 βŠ† β„’ sublattice of dimension 𝑙 Convention: 𝑁 = {0} then det 𝑁 ≔ 1 . Normalized Determinant: Ξ€ 1 𝑙 nd 𝑁 ≔ det 𝑁 Projected Sublattice: β„’ 𝑁 ≔ β„’ projected onto span 𝑁 βŠ₯ Ξ€

  38. Lower Bounds for Chains Theorem [D. 17]: For 0 = β„’ 0 βŠ‚ β„’ 1 βŠ‚ β‹― βŠ‚ β„’ 𝑙 = β„’ then 𝜈 β„’ 2 β‰Ώ Οƒ 𝑗=1 𝑙 β„’ β„’ π‘—βˆ’1 2 Ξ€ Ξ€ dim( β„’ 𝑗 β„’ π‘—βˆ’1 ) nd Only β€œmissing ingredient”: Combined with techniques from [R.S. `17] easily get tightness within slicing constant 𝑀 π‘œ .

  39. Lower Bounds for Chains Theorem [D. 17]: For 0 = β„’ 0 βŠ‚ β„’ 1 βŠ‚ β‹― βŠ‚ β„’ 𝑙 = β„’ then 𝜈 β„’ 2 β‰Ώ Οƒ 𝑗=1 𝑙 β„’ β„’ π‘—βˆ’1 2 Ξ€ Ξ€ dim( β„’ 𝑗 β„’ π‘—βˆ’1 ) nd Proof Idea: 1. Establish SDP based lower bound: [D.R. `16] 𝜈 β„’ 2 β‰Ώ max Οƒ 𝑗 rk 𝑄 𝑗 nd 𝑄 𝑗 β„’ 2 βˆ— 𝑄 𝑗 β‰Ό 𝐽 π‘œ s.t. Οƒ 𝑗 𝑄 𝑗 2. Build solution to above starting from any chain.

  40. Lattice Density π‘œ β„’ ∩ 𝑠𝐢 2 1 lim π‘œ ) = vol π‘œ (𝑠𝐢 2 det β„’ π‘ β†’βˆž 𝑠 β„’

  41. Lattice Density π‘œ β„’ ∩ 𝑠𝐢 2 1 lim π‘œ ) = vol π‘œ (𝑠𝐢 2 det β„’ π‘ β†’βˆž 𝑠 Global density of lattice points per unit volume β„’

  42. Minkowski’s First Theorem π‘œ ) π‘œ β‰₯ 2 βˆ’π‘œ vol π‘œ (𝑠𝐢 2 β„’ ∩ 𝑠𝐢 2 det β„’ 1889 𝑠 β„’ Global density implies β€œlocal density”

  43. Reverse Minkowski Theorem Regev-S.Davidowitz `17: β„’ lattice dimension π‘œ . If all sublattices of β„’ have determinant at least 1 then: β„’ has at most 2 𝑃(log 2 π‘œ 𝑠 2 ) points at distance 𝑠 . Almost tight: β„€ π‘œ has π‘œ Ξ©(𝑙) points at distance 𝑠 for 𝑙 β‰ͺ π‘œ .

  44. Outline 1. Integer Programming and the Kannan-LovΓ‘sz (KL) Conjecture. 2. β„“ 2 KL Conjecture & the Reverse Minkowski Conjecture. 3. Finding dense lattice subspaces.

Recommend


More recommend