On Approximating the Covering Radius and Finding Dense Lattice Subspaces Daniel Dadush Centrum Wiskunde & Informatica (CWI) ICERM April 2018
Outline 1. Integer Programming and the Kannan-LovΓ‘sz (KL) Conjecture. 2. β 2 KL Conjecture & the Reverse Minkowski Conjecture. 3. Finding dense lattice subspaces.
Integer Programming (IP) minππ¦ π s.t. π΅π¦ β€ π πΏ π¦ π β€ π π variables, π constraints Open Question: Is there a 2 π(π) time algorithm? First result: 2 π(π 2 ) [Lenstra `83] Best known complexity: π π(π) [Kannan `87]
Main Dichotomy π πΏ, β€ π β smallest scaling π‘ such that every shift π‘πΏ + π’ contains an integer point. πΏ β€ 2 Either covering radius π πΏ, β€ π β€ 1 .
Main Dichotomy π πΏ, β€ π β smallest scaling π‘ such that every shift π‘πΏ + π’ contains an integer point. πΏ β€ 2 Either covering radius π πΏ, β€ π β€ 1 .
Main Dichotomy π πΏ, β€ π β smallest scaling π‘ such that every shift π‘πΏ + π’ contains an integer point. πΏ β€ 2 Either covering radius π πΏ, β€ π β€ 1 .
Main Dichotomy π πΏ, β€ π β smallest scaling π‘ such that every shift π‘πΏ + π’ contains an integer point. π πΏ, β€ 2 = 2 2 3 πΏ 3 β€ 2 Either covering radius π πΏ, β€ π β€ 1 .
Main Dichotomy Can find integer point in 2 π(π) time [D. 12] πΏ β€ 2 Either covering radius π πΏ, β€ π β€ 1 .
Main Dichotomy Or πΏ is βflatβ: Projection on π§ -axis πΏ π = (0 1) β€ 2 There exists rank π β₯ 1 integer projection π β β€ πΓπ 1 π is small . such vol π ππΏ
Main Dichotomy Or πΏ is βflatβ: Projection on π§ -axis πΏ π = (0 1) β€ 2 There exists rank π β₯ 1 integer projection π β β€ πΓπ 1 π is small . such vol π ππΏ
Main Dichotomy Or πΏ is βflatβ: Recurse on β vol k PK subproblems [D. 12] πΏ β€ 2 There exists rank π β₯ 1 integer projection π β β€ πΓπ 1 π is small . such vol π ππΏ
Duality Relation 1 1 β€ π πΏ, β€ π π β€ ? min vol π ππΏ πββ€ πΓπ π π π =πβ₯1 βEasyβ side βHardβ side Either covering radius π(πΏ, β€ π ) is small or πΏ is βflatβ.
Khinchine Flatness Theorem πΏ vol 1 (ππΏ) β€ ΰ·© O(π Ξ€ 1 β€ π πΏ, β€ π 4 3 ) min πββ€ 1Γπ π π π =1 [ Khinchine `48, Babai `86, Hastad `86, Lenstra-Lagarias- Schnorr `87, Kannan-Lovasz `88, Banaszczyk `93-96, Banaszczyk-Litvak-Pajor-Szarek `99, Rudelson `00 ]
Kannan-LovΓ‘sz Flatness Theorem πΏ 1 1 β€ π πΏ, β€ π π β€ π min vol π ππΏ πββ€ πΓπ π π π =πβ₯1 [ Kannan `87, Kannan-LovΓ‘sz `88 ]
Kannan-LovΓ‘sz (KL) Conjecture πΏ 1 1 β€ π πΏ, β€ π π β€ π log π βΌ min vol π ππΏ πββ€ πΓπ π π π =πβ₯1
Faster Algorithm for IP? 1 1 β€ π πΏ, β€ π π β€ π log π min vol π ππΏ πββ€ πΓπ π π π =πβ₯1 D. `12: Assuming KL conjecture + π computable in (log π) π(π) time then there is log π π(π) time algorithm for IP.
β 2 Kannan-LovΓ‘sz Conjecture Does the conjecture hold for ellipsoids? πΉ 0 β€ π π An ellipsoid is πΉ = ππΆ 2
β 2 Kannan-LovΓ‘sz Conjecture Answer: YES* [Regev-S.Davidowitz 17] πΉ 0 β€ π * up to polylogarithmic factors
β 2 Kannan-LovΓ‘sz Conjecture Can we compute the projection P? πΉ 0 β€ π THIS TALK: YES, in 2 π(π) time.
Outline 1. Integer Programming and the Kannan-LovΓ‘sz (KL) Conjecture. 2. β 2 KL Conjecture & the Reverse Minkowski Conjecture. 3. Finding dense lattice subspaces.
β 2 Kannan-LovΓ‘sz Conjecture Easier to think of Euclidean ball vs general lattice. π ππΉ = πΆ 2 0 β = πβ€ π
Lattices A lattice β β β π is πΆβ€ π for a basis πΆ = π 1 , β¦ , π π . β(πΆ) denotes the lattice generated by πΆ . π 2 π 1 π 1 Note: a lattice has many equivalent bases. π 2 π 2 β
Lattices A lattice β β β π is πΆβ€ π for a basis πΆ = π 1 , β¦ , π π . β(πΆ) denotes the lattice generated by πΆ . π 1 The determinant of β is | det πΆ | . π 2 β
Lattices A lattice β β β π is πΆβ€ π for a basis πΆ = π 1 , β¦ , π π . β(πΆ) denotes the lattice generated by πΆ . π 1 The determinant of β is | det πΆ | . Equal to volume of π 2 any tiling set. β
β 2 Covering Radius π , β π β β π πΆ 2 Distance of farthest point to the lattice β . π π² β Voronoi cell π² β all points closer to 0
Volumetric Lower Bounds π π β vol π πΆ 2 β₯ vol n π² = det(β) π π² β Voronoi cell π² β all points closer to 0
Volumetric Lower Bounds π β1 1 π det β π(β) β₯ vol n πΆ 2 π π π² β Voronoi cell π² β all points closer to 0
Volumetric Lower Bounds 1 π(β) βΏ π det β π π π² β Voronoi cell π² β all points closer to 0
Volumetric Lower Bounds π β β₯ π β βπ π π βπ π β β βπ projection onto π
Volumetric Lower Bounds 1 π β β₯ π β βπ β³ π det β βπ π π π βπ π β β βπ projection onto π dim(π) = π β₯ 1
Volumetric Lower Bounds 1 π β β³ max π det β βπ π dim π =πβ₯1 π π βπ π β β βπ projection onto π dim(π) = π β₯ 1
β 2 Kannan-LovΓ‘sz Conjecture Define π· πΏπ,2 (π) to be smallest number such that 1 π β β€ π· πΏπ,2 (π) max π det β βπ π dim π =πβ₯1 for all lattices of dimension at most π . π· πΏπ,2 π = Ξ©( log π) 1 1 Lower bound for β with basis π 1 , 2 π 2 , β¦ , π π π .
KL Bounds 1 π β β€ π· πΏπ,2 (π) max π det β βπ π dim π =πβ₯1 π Kannan-LovΓ‘sz `88: D. Regev `16: log π(1) π Assuming Reverse Minkowski Conjecture. 3 2 π Regev, S.Davidowitz `17: log Ξ€ Reverse Minkowski Conjecture is proved!
Our Results π dimensional lattice β β β(πΆ) 1. Can compute subspace π , dim π = π β₯ 1 1 π β β€ π(log 2.5 π ) π det β βπ π in 2 π(π) time with high probability. Prior work: π in 2 π(π) time. Kannan LovΓ‘sz `88: D. Micciancio `13: best subspace in π π(π 2 ) time.
Our Results π dimensional lattice β β β(πΆ) 2. Can combine lower bounds over different subspaces to certify π π up to the slicing constant π π for βstableβ Voronoi cells*. π² * If vol n π² = 1 πΌ can find hyperplane πΌ s.t. vol nβ1 π² β© πΌ = Ξ©( 1 ππ )
Our Results π dimensional lattice β β β(πΆ) 2. Can combine lower bounds over different subspaces to certify π π up to the slicing constant π π for βstableβ Voronoi cells*. π² Slicing Conjecture: πΌ π π = π(1) for all convex bodies! For βstableβ Voronoi cells: π π = π(log π) [RS `17]
Notation π β β sublattice of dimension π Convention: π = {0} then det π β 1 . Normalized Determinant: Ξ€ 1 π nd π β det π Projected Sublattice: β π β β projected onto span π β₯ Ξ€
Lower Bounds for Chains Theorem [D. 17]: For 0 = β 0 β β 1 β β― β β π = β then π β 2 βΏ Ο π=1 π β β πβ1 2 Ξ€ Ξ€ dim( β π β πβ1 ) nd Only βmissing ingredientβ: Combined with techniques from [R.S. `17] easily get tightness within slicing constant π π .
Lower Bounds for Chains Theorem [D. 17]: For 0 = β 0 β β 1 β β― β β π = β then π β 2 βΏ Ο π=1 π β β πβ1 2 Ξ€ Ξ€ dim( β π β πβ1 ) nd Proof Idea: 1. Establish SDP based lower bound: [D.R. `16] π β 2 βΏ max Ο π rk π π nd π π β 2 β π π βΌ π½ π s.t. Ο π π π 2. Build solution to above starting from any chain.
Lattice Density π β β© π πΆ 2 1 lim π ) = vol π (π πΆ 2 det β π ββ π β
Lattice Density π β β© π πΆ 2 1 lim π ) = vol π (π πΆ 2 det β π ββ π Global density of lattice points per unit volume β
Minkowskiβs First Theorem π ) π β₯ 2 βπ vol π (π πΆ 2 β β© π πΆ 2 det β 1889 π β Global density implies βlocal densityβ
Reverse Minkowski Theorem Regev-S.Davidowitz `17: β lattice dimension π . If all sublattices of β have determinant at least 1 then: β has at most 2 π(log 2 π π 2 ) points at distance π . Almost tight: β€ π has π Ξ©(π) points at distance π for π βͺ π .
Outline 1. Integer Programming and the Kannan-LovΓ‘sz (KL) Conjecture. 2. β 2 KL Conjecture & the Reverse Minkowski Conjecture. 3. Finding dense lattice subspaces.
Recommend
More recommend