of savinja catchment
play

of Savinja catchment Ljubljana, 01.12.2016 Email: - PowerPoint PPT Presentation

Precipitation & Runoff modeling of Savinja catchment Ljubljana, 01.12.2016 Email: andrej.vidmar@fgg.uni-lj.si 1 The drainage basin hydrological cycle The drainage basin hydrological system Source:


  1. Precipitation & Runoff modeling of Savinja catchment Ljubljana, 01.12.2016 Email: andrej.vidmar@fgg.uni-lj.si 1

  2. The drainage basin hydrological cycle The drainage basin hydrological system Source: http://www.alevelgeography.com/drainage-basin-hydrological-system 2

  3. Drainage Basin Flow Chart Lakes/ Reservoars Source: http://www.alevelgeography.com 3

  4. The basic principle 4

  5. Which hydrological model? • various ongoing researches are there on topics like which model will give more compatible results compared to P-R relations • HSPF, TOPMODEL, HBV, MIKE-SHE, SWAT ,… HBV-light & PEST HBV-light: http://www.geo.uzh.ch/en/units/h2k/services/hbv-model/ PEST: http://www.pesthomepage.org/ 5

  6. HBV - Hydrologiska Byråns Vattenbalansavdelning (Hydrological Agency Water Balance Department) • The HBV model (Bergström, 1976, 1992) is a rainfall-runoff model, which includes conceptual numerical descriptions of hydrological processes at the catchment scale. The general water balance can be described as   d         P E Q SP SM TZ UZ LZ lakes Where dt P = precipitation E = evapotranspiration Q = runoff SP = snow pack SM = soil moisture TZ = storage in soil top zone (introduced in HBV-light) UZ = upper groundwater zone storage LZ = lower groundwater zone storage lakes = lake volume Source: http://www.smhi.se/forskning/forskningsomraden/hydrologi/hbv-1.1566 6

  7. Semi-distribution Subdivides a large problem into smaller, simpler parts with unique characteristic • Elevation zones • Vegetation zones 7

  8. HBV overview • The HBV model is a simple multi-tank- type model for simulating runoff. • Rainfall and air temperature data as well as estimated potential evaporation data based on the American Society of Civil Engineers Penman – Monteith method are inputs to the model, which consists of four commonly used routines: snow; soil moisture; response; and routing. Picture: Help HBV-light – An Overview of the HBV Model 8

  9. Model of Computed Runoff Source: Help HBV-light – Three GW Box (Distributed STZ and SUZ) Model 9

  10. Equations Overview Source: Help HBV-light – An Overview of the HBV Model

  11. Catchment Parameters Three GW Box (Distributed STZ and SUZ) Model

  12. Vegetation Zone Parameters Source: Help HBV-light – Parameter Overview 12

  13. Effect of T T Picture: Help HBV-light 13

  14. Savinja Catchment • Enclosed Area of 1852.3 sq km • min_Elev_m=190.1 m • max_Elev_m=2429.0 m • avg_Elev_m=604.5 m • avg_Aspect=SE (127°) • Older_Celje_elev=~238.0 m 14

  15. Flood 1954 Savinja-Celje 15

  16. Jo Josephinische Landesaufnahme (1 (1763-1787) 16

  17. Flood 1990 Savinja- Laško 17

  18. Relational Hydro and Meteo Data Data source: MOP -ARSO, 2015 18

  19. HIGRIS – Hydrologic Graphical IS - basically designed with Global Mapper and has more than 130 layers and a lot of external links • GIS (Global Mapper [LiDAR], Map Window, SAGA, ILWIS, Google Earth Pro) • CAD (AutoCAD MAP 3D, QuickSurf, Surfer) • Graphic design (PhotoLine, PaintShop) • DB (ASCII, MS Access, PostGIS) • Statistic (MS Excell, Origin, Scilab) • Programming (SQL, PowerBasic, Python with NumPy) • P-R model (HBV-light_CLI, HBV-light-GUI) • Calibration Tools (PEST, GAP and Monte Carlo are included in HBV-light) • File navigation and data preview (Total Commander, IrfanView, Acrobat) 19

  20. Savinja 21 sub-catchments; I. model 20

  21. Savinja 77 sub-catchments; II. model 21

  22. Geology [Alluvi-Karst] 22

  23. Vegetation zones • 3 vegetation zones 23

  24. Elevation zones • 16 elevation zones 24

  25. Precipitation RR hour • 33 precipitation stations 25

  26. What is PEST? 26

  27. BeoPEST is an tool for model calibration 27

  28. Model Calibration Source: Help HBV-light – Model Calibration 28

  29. [PTQ screen] 29

  30. Flood Wave Celje 18.-20.09.1007 30

  31. Goodnes of f Fit for calibration period - year 2007 Average model efficiency of Savinja River to Gračnic a 0.952 inflow for whole calibration period 2007 Average model efficiency for flood wave 18.-22.09.2007 0.988 31

  32. Savinja - vp Nazarje 3+4i vp Savinja - Nazarje 600.00 500.00 400.00 300.00 200.00 100.00 0.00 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 32

  33. Savinja - vp Letuš 1 5 vp Savinja - Letuš I 700 600 500 400 300 200 100 0 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 33

  34. Savinja – vp Medlog 11 vp Savinja - Medlog 1000 900 800 700 600 500 400 300 200 100 0 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 34

  35. Savinja – vp Celje II _ brv 13 vp Savinja - Celje II - brv 1200 1000 800 600 400 200 0 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 35

  36. Savinja – vp Laško 19 vp Savinja - Laško 1400 1200 1000 800 600 400 200 0 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 36

  37. Dreta – vp Kraše 4 vp Dreta - Kraše 250.00 200.00 150.00 100.00 50.00 0.00 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 37

  38. Bolska – vp Dolenja vas 10 vp Bolska - Dolenja vas 160 140 120 100 80 60 40 20 0 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 38

  39. Ložnica – vp Levec I 12 vp Lo ž nica - Levec I 140 120 100 80 60 40 20 0 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 39

  40. Gračnica – vp Vodiško I 20 vp Gračnica - Vodiško I 14 12 10 8 6 4 2 0 17.09.2007 12:00 18.09.2007 00:00 18.09.2007 12:00 19.09.2007 00:00 19.09.2007 12:00 20.09.2007 00:00 20.09.2007 12:00 Series1 Series2 40

  41. Goodnes of f Fit for validation period - year 1990 WS2 WS2_Name NS (1.10-14.11.1990) 1 Savinja do VP Solčava I 0.85 8 Dreta do VP Kraše 0.90 38 Ložnica do VP Levec I 0.94 45 Savinja do VP Celje II - brv 0.97 53 Hudinja do VP Škofja Vas 0.8 62 Voglajna do VP Celje II 0.8 67 Savinja do VP Laško 0.97 76 Savinja do VP Veliko Širje I 0.84 41

  42. Flood Wave vp Laško 26.10.-05.11.1990 42

  43. Savinja – vp Celje II _ brv Savinja-Celje II - brv 1400 1200 1000 800 600 400 200 0 26.10.1990 00:00:00 28.10.1990 00:00:00 30.10.1990 00:00:00 01.11.1990 00:00:00 03.11.1990 00:00:00 05.11.1990 00:00:00 07.11.1990 00:00:00 09.11.1990 00:00:00 11.11.1990 00:00:00 Series2 Series3 43

  44. Savinja – vp Laško Savinja- Laško I 1600 1400 1200 1000 800 600 400 200 0 26.10.1990 00:00:00 28.10.1990 00:00:00 30.10.1990 00:00:00 01.11.1990 00:00:00 03.11.1990 00:00:00 05.11.1990 00:00:00 07.11.1990 00:00:00 09.11.1990 00:00:00 11.11.1990 00:00:00 Series1 Series2 44

  45. Ložnica – vp Levec I Ložnica -Levec I 90 80 70 60 50 40 30 20 10 0 26.10.1990 00:00 28.10.1990 00:00 30.10.1990 00:00 1.11.1990 00:00 3.11.1990 00:00 5.11.1990 00:00 7.11.1990 00:00 9.11.1990 00:00 11.11.1990 00:00 Series1 Series2 45

  46. Dreta – vp Kraše Dreta- Kraše 300 250 200 150 100 50 0 26.10.1990 00:00:00 28.10.1990 00:00:00 30.10.1990 00:00:00 01.11.1990 00:00:00 03.11.1990 00:00:00 05.11.1990 00:00:00 07.11.1990 00:00:00 09.11.1990 00:00:00 11.11.1990 00:00:00 Series1 Series2 46

  47. Voglajna – vp Celje II Voglajna-Celje II 70 60 50 40 30 20 10 0 26.10.1990 00:00 28.10.1990 00:00 30.10.1990 00:00 1.11.1990 00:00 3.11.1990 00:00 5.11.1990 00:00 7.11.1990 00:00 9.11.1990 00:00 11.11.1990 00:00 Series1 Series2 47

  48. 1. Why use a P-R modeling? • for education • for decision support • for data quality control • for water balance studies • for drought runoff forecasting (irrigation) • for fire risk warning • for runoff forecasting/prediction (flood warning and reservoir operation) • for what happens if’ questions 48

  49. 2. Why use a P-R modeling? • to compute design floods for flood risk detection • to extend runoff data series (or filling gaps) • to compute design floods for dam safety • to compute energy production • to investigate the effects of land-use changes within the catchment • to simulate discharge from ungauged catchments • to simulate climate change effects 49

  50. Designed Flood Predictions • based on flood event 2007 (50 year return period) 24 hour Precipitation Event for Q10, Q20, Q50, Q100, Q200 and Q500 • based on flood event 1990 and 1998 (100 year return period) 48 hour Precipitation Event for Q10, Q20, Q50, Q100, Q200 and Q500 50

Recommend


More recommend