Gaze-Dependent Simulation of Light Perception in Virtual Reality ISMAR 2020 Laura R. Luidolt 1 Michael Wimmer 1 Katharina Krösl 2 1 2 1 TU Wien , 2 VRVis Forschungs-GmbH Research Division of Computer Graphics Institute of Visual Computing & Human-Centered Technology TU Wien, Austria
Introduction brightness range < tone mapping Motivation ▪ Overview ▫ Methodology ▫ Evaluation ▫ Conclusion ▫ 2 L. R. Luidolt
Introduction Motivation ▪ Overview ▫ Methodology ▫ Evaluation ▫ Conclusion ▫ 3 L. R. Luidolt
Introduction ▪ → Perceptual algorithms necessary! ▪ Medically based ▪ Account for viewing direction, pupil size Motivation ▪ Overview ▫ Methodology ▫ Evaluation ▫ Conclusion ▫ 4 L. R. Luidolt
Contribution ▪ Post-processing workflow ▪ Accurate simulation of light perception in VR/AR ▪ Medically-based, perceptual effects ▪ In real-time VR/AR ▪ Following optometrist advice ▪ Eye tracking for measuring light incidence Motivation ▪ ▪ Pilot user study, comparison of Overview ▫ ▪ Real-world low-light situation Methodology ▫ Evaluation ▫ ▪ And VR simulation Conclusion ▫ 5 L. R. Luidolt
Temporal Eye Perceptual Visual Acuity Scotopic Adaptation Glare Reduction Color Vision Visual adjustment to Colorful patterns Blurred details in low Color shift towards bright and dark when viewing bright light scenes blue in low light light sources scenes Adaptation of rods Scattering of light in Rods not present in Rods more sensitive and cones over time the eye fovea (point of to longer wavelength Motivation ▫ sharpest vision) light than cones Overview ▪ Methodology ▫ Evaluation ▫ Conclusion ▫ Based on Krawczyk et al., 2005 6 L. R. Luidolt and Ritschel et al., 2009
Temporal Eye Perceptual Visual Acuity Scotopic Adaptation Glare Reduction Color Vision Visual adjustment to Colorful patterns Blurred details in low Color shift towards bright and dark when viewing bright light scenes blue in low light light sources scenes Adaptation of rods Scattering of light in Rods not present in Rods more sensitive and cones over time the eye fovea (point of to longer wavelength Motivation ▫ sharpest vision) light than cones Overview ▪ Methodology ▫ Evaluation ▫ Conclusion ▫ L. R. Luidolt0 0 2 1,.4 - Based on Krawczyk et al., 2005 8 0.02 0.15 2.2 2.9 and Ritschel et al., 2009
Temporal Eye Perceptual Visual Acuity Scotopic Adaptation Glare Reduction Color Vision Visual adjustment to Colorful patterns Blurred details in low Color shift towards bright and dark when viewing bright light scenes blue in low light light sources scenes Adaptation of rods Scattering of light in Rods not present in Rods more sensitive and cones over time the eye fovea (point of to longer wavelength Motivation ▫ sharpest vision) light than cones Overview ▪ Methodology ▫ Evaluation ▫ Conclusion ▫ Based on Krawczyk et al., 2005 10 L. R. Luidolt and Ritschel et al., 2009
Temporal Eye Perceptual Visual Acuity Scotopic Adaptation Glare Reduction Color Vision Visual adjustment to Colorful patterns Blurred details in low Color shift towards bright and dark when viewing bright light scenes blue in low light light sources scenes Adaptation of rods Scattering of light in Rods not present in Rods more sensitive and cones over time the eye fovea (point of to longer wavelength Motivation ▫ sharpest vision) light than cones Overview ▪ Methodology ▫ Evaluation ▫ Conclusion ▫ Based on Krawczyk et al., 2005 12 L. R. Luidolt and Ritschel et al., 2009
Temporal Eye Perceptual Visual Acuity Scotopic Adaptation Glare Reduction Color Vision Visual adjustment to Colorful patterns Blurred details in low Color shift towards bright and dark when viewing bright light scenes blue in low light light sources scenes Adaptation of rods Scattering of light in Rods not present in Rods more sensitive and cones over time the eye fovea (point of to longer wavelength Motivation ▫ sharpest vision) light than cones Overview ▪ Methodology ▫ Evaluation ▫ Conclusion ▫ Based on Krawczyk et al., 2005 14 L. R. Luidolt and Ritschel et al., 2009
Temporal Eye Adaptation ▪ 𝑀 𝑗 = 𝑀 𝑗−1 + (𝑍 − 𝑀 𝑗−1 ) ∙ ft 𝜐(𝑍) 1 − 𝑓 − ൗ ▪ Target luminance Y Motivation ▫ ▪ Temporally filtered Overview ▫ luminance L i of frame i Methodology ▼ Adaptation ▪ ▪ Photoreceptor adaptation Glare ▫ VA reduction ▫ times τ Color shift ▫ Evaluation ▫ Conclusion ▫ 15 L. R. Luidolt
Perceptual Glare Motivation ▫ Overview ▫ Methodology ▼ Adaptation ▫ Glare ▪ VA reduction ▫ Color shift ▫ Evaluation ▫ Conclusion ▫ Image adapted from 16 L. R. Luidolt commons.wikimedia.org/wiki/File:Eyesection.svg
Perceptual Glare Motivation ▫ Overview ▫ Methodology ▼ Adaptation ▫ Glare ▪ VA reduction ▫ Color shift ▫ Evaluation ▫ Conclusion ▫ Image adapted from 17 L. R. Luidolt commons.wikimedia.org/wiki/File:Eyesection.svg
Perceptual Glare Motivation ▫ Overview ▫ Methodology ▼ Adaptation ▫ Glare ▪ VA reduction ▫ 2 1 1 Color shift ▫ 𝑂 ∙ ℱ 𝑄(𝑦, 𝑧) ∙ 𝑓i 𝜌 𝜇𝑒 𝑦 2 +𝑧 2 𝑁 𝑦, 𝑧 = 𝜇𝑒 2 Evaluation ▫ After Ritschel et al., 2009 Conclusion ▫ Image adapted from 18 L. R. Luidolt commons.wikimedia.org/wiki/File:Eyesection.svg
Perceptual Glare Monochromatic PSF Diffraction on the retina of a Motivation ▫ single wavelength light source Overview ▫ Methodology ▼ Spectral PSF Adaptation ▫ Glare ▪ Combination of multiple VA reduction ▫ Color shift ▫ wavelengths to simulate spectral Evaluation ▫ light Conclusion ▫ 19 L. R. Luidolt
Perceptual Glare Monochromatic PSF Diffraction on the retina of a Motivation ▫ single wavelength light source Overview ▫ Methodology ▼ Spectral PSF Adaptation ▫ Glare ▪ Combination of multiple VA reduction ▫ Color shift ▫ wavelengths to simulate spectral Evaluation ▫ light Conclusion ▫ 20 L. R. Luidolt
Perceptual Glare · (1 - ) + · Motivation ▫ Overview ▫ = Methodology ▼ Adaptation ▫ Glare ▪ VA reduction ▫ Color shift ▫ Evaluation ▫ Conclusion ▫ 21 L. R. Luidolt
Perceptual Glare Motivation ▫ Overview ▫ Methodology ▼ Adaptation ▫ Glare ▪ VA reduction ▫ Color shift ▫ Evaluation ▫ Conclusion ▫ 22 L. R. Luidolt
Visual Acuity Reduction ▪ 𝜏 𝑀 = max(1 − 𝑀, 0) ▪ Gaussian variance 𝜏 Motivation ▫ Overview ▫ ▪ Pixel’s lightness L Methodology ▼ Adaptation ▫ Glare ▫ VA reduction ▪ Color shift ▫ Evaluation ▫ Conclusion ▫ 23 L. R. Luidolt
Scotopic Color Vision Motivation ▫ Overview ▫ Methodology ▼ Adaptation ▫ Glare ▫ VA reduction ▫ Color shift ▪ Off On Evaluation ▫ Conclusion ▫ 24 L. R. Luidolt
Evaluation Motivation ▫ Qualitative user study with 5 Overview ▫ participants Methodology ▫ Evaluation ▪ Conclusion ▫ 25 L. R. Luidolt
Conclusion Motivation ▫ ▪ temporal eye adaptation Real-time VR/AR post-processing workflow Overview ▫ ▪ perceptual glare Using eye tracking ▪ visual acuity reduction Methodology ▫ Based on medical research ▪ scotopic color vision Evaluation ▫ Pilot user study Conclusion ▪ Related article: “ CatARact : Simulating Cataracts in Augmented Reality”, 26 L. R. Luidolt Krösl et al., 2020
Thank you for your attention! Gaze-Dependent Simulation of Light Perception in Virtual Reality Laura R. Luidolt, luidolt@cg.tuwien.ac.at Michael Wimmer, wimmer@cg.tuwien.ac.at Katharina Krösl, kroesl@vrvis.at
Recommend
More recommend