obtaining knowledge and data for separations from
play

Obtaining Knowledge and Data for Separations from Molecular - PowerPoint PPT Presentation

Obtaining Knowledge and Data for Separations from Molecular Simulation J. Ilja Siepmann Nanoporous Materials Genome Center, Chemical Theory Center, Depts. of Chemistry and of Chemical Engineering & Materials Science University of Minnesota,


  1. Obtaining Knowledge and Data for Separations from Molecular Simulation J. Ilja Siepmann Nanoporous Materials Genome Center, Chemical Theory Center, Depts. of Chemistry and of Chemical Engineering & Materials Science University of Minnesota, Twin-Cities, MN Vapor–Liquid Equilibria / Distillation Liquid–Liquid Equilibria / Extraction Sorption and Transport in Porous Materials / Adsorption & Membranes Analyte Distribution / Chromatography A Research Agenda for a New Era in Separations Science Keck Center, Washington, DC August 22, 2018

  2. Goals and Challenges: Molecular Simulation • provide atomic-level understanding of complex chemical systems and processes • investigate how changes in molecular architecture and composition influence macroscopic observables • predict accurate thermophysical properties (Chemical Industry, Vision 2020) • design improved separation processes and functional materials • precision of particle-based simulations depends solely on sampling the important regions in phase space • develop efficient Monte Carlo and molecular dynamics algorithms to sample events/processes occurring at multiple physical timescales and length scales , e.g., local displacements versus self-assembly in fluid mixtures, transfer in multi-phase systems, and chemical reactions • develop software and workflows that utilize high-performance computers with > 10 5 cores, novel memory distribution, and co-processor acceleration • accuracy depends solely on the force field or electronic structure theory used to describe inter- and intramolecular interactions • develop transferable force fields (different molecules and solid sorbents, state points, compositions, and properties) • develop Kohn-Sham density functional theory for chemisorption and reactive systems

  3. Potentials & Forces – Goarse-Graining number of sites blobs representjng multjple molecules S trans blobs representjng many atoms S rot beads representjng 3 or 4 bonded atoms S dihedral UA with partjal charges and C6 dispersion UA with multjpoles and/or higher-order dispersion AA with partjal charges and C6 dispersion e v e AA with multjples and/or higher-order dispersion tj v c i s a s l e u off-atom sites e m v r p r r tj / e e e s r i f r e e e d t s frozen electron density f e t t n d y e s a a g d a a n l t t b n r s o s a e t a a pseudopotentjal for core electrons r b d d s e z r t - i n - e i w g y t m r t u r a n r r i a o c o o l a all electron i o a x h h r t m e g a p p c s response nuclear quantum effects classical mechanics in contjnuum space classical mechanics on lattjce particle position

  4. Transferability, Accuracy & Efficiency Ø � Transferable � force field (FF) implies l parameters for a given interaction site should be transferable to different molecules (e.g., identical parameters should be used for the methyl group in, say, n -hexane, 1- hexene, or 1-hexanol) l a specific (set of) combining rule(s) is used consistently l parameters can be used over a wide range of temperatures and pressures; (low-temperature physics, planetary science) l parameters can be used to predict different types of properties (e.g., thermodynamic, structural, or transport) Ø � Accuracy � can only be assessed by comparison to reliable experimental data and one requires data beyond the fitting set to truly assess � transferability � (true versus effective potentials) Ø “Efficiency” is a quest for simplicity while maintaining “accuracy” by adjusting l functional form of interaction potential (square root, spherically symmetric) l number and types of interaction sites (e.g., meso-bead, united atom, all atom, nuclei & valence electron centers) l number of adjustable parameters

  5. Parameterization and Transferability Early TraPPE-UA models : Ø Fitted to reproduce critical temperature and low- T liquid density ; i.e., the Vapor-liquid coexistence curves temperature-dependent Gibbs free energy of transfer Ø Using relatively short simulations over limited temperature range Transferability of CH x united atoms Bead-by-bead parameterization using experimental VLE data

  6. VLE – Prediction of Critical Points Nature 1993 , 365 , 330 J. Chem. Eng. Data 2014 , 59 , 3301

  7. Performance for VLE Prediction TraPPE-EH Gibbs99 Mie OPPE TraPPE-UA 800 NERD sim [K] 600 2 = 0.995 400 T c 2 = 0.999 R R MUPE = 1.2% MUPE = 0.2% 2 = 0.967 2 = 0.997 2 = 0.984 2 = 0.993 200 R R R R MUPE = 1.2% MUPE = 0.9% MUPE = 1.5% MUPE = 1.0% critical 0 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 temperature exp [K] exp [K] exp [K] exp [K] T c T c T c T c TraPPE-EH Mie OPPE TraPPE-UA 600 normal sim [K] boiling 400 T b point 2 = 0.995 R MUPE = 1.0% 200 2 = 0.999 2 = 0.989 2 = 0.993 R R R MUPE = 0.5% MUPE = 2.1% MUPE = 2.0% 0 0 200 400 600 0 200 400 600 0 200 400 600 exp [K] exp [K] exp [K] T b T b T b Mie OPLS TraPPE-UA 4 OPPE r sim / r exp - 1 [%] 2 ambient 0 density -2 MUPE = 0.8% -4 Siepmann, MUPE = 1.0% MUPE = 1.5% MUPE = 1.1% unpublished data 0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 3 ] 3 ] 3 ] r sim [g/cm r sim [g/cm r sim [g/cm

  8. Fitting to Binary VLE Data AIChE J. 2001 , 47 , 1676 Vapor-liquid coexistence curves TraPPE-CO 2 JPCB 2001 , 105 , 9840 EPM2

  9. VLE – Azeotropes & Complex Mixtures JPCB 2001 , 105 , 3093 ACR 2007 , 40 , 1200 FPE 2004 , 220 , 211

  10. VLE - Distillation AIChE J. 2017 , 63 , 5098 Model with distributed partial charges is significantly more accurate than point- quadrupole model Difference in separation factor for ethane-rich mixtures leads to 30% differences in number of stages in stripping section of distillation column

  11. VLE – First Principles Simulations J. Phys. Chem. A 2006 , 110 , 640 PCCP 2013 , 15 , 13578 Siepmann, unpublished data 700 7 6 600 5 -ln r vap. T [K] rVV10 4 B97M-rV 500 revPBE-D3 BLYP-D3 3 M06-L-D3 PBE0-D3 400 2 0.0 0.2 0.4 0.6 0.8 1.0 1.50 1.75 2.00 2.25 r [g/ml] 1000/ T

  12. (V)LLE – Miscibility Gaps FPE 2016 , 407 , 269 J. Phys. Chem. B 2005 , 109 , 2911

  13. LLE – Extraction AIChE J. 2013 , 59 , 3065 4-decanol 1-decanol

  14. LLE – Polymer Phase Behavior & Aggrgation Low-χ Mixtures: Polyolefins High-χ Mixtures: PEO/PEP PP hhPP PEP PEO H 3 C O O CH 3 n n n n − 1 Chen et al. , 1 Chen et al. , 500 550 Expt Sim Macromolecules Macromolecules 51 , 3774 (2018) 49 , 3975 (2016) 0.5 450 500 1/2 ] ( δ 1 - δ 2 ) sim [MPa T [K] T [K] 0 400 450 -0.5 350 400 PP+PEP 217-MD-1.01 222-MD-1.0 hhPP+PP 280-SZ-1.05 280-SZ-1.05 hhPP+PEP 500-SZ-1.10 500-SZ-1.1 -1 300 350 -1 -0.5 0 0.5 1 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 1/2 ] Weight fraction of PEP*-423 Weight fraction of PEP*-423 ( δ 1 - δ 2 ) SANS [MPa 10 χ MF ( T sim = 400 K or T expt = 300 K) mono-oligomers mono-oligomers di-oligomers Expt HO y -1 x -2 mean-field OH Extreme-χ Block Oligomers 1 di-oligomers Chen et al. , ( x -3)/2 ACS Nano 12 , 4351 (2018) 0.1 HO y -1 ( x -3)/2 OH 0 5 10 15 20 Domain period d [nm]

  15. Developing the TraPPE-zeo Force Field J . Phys. Chem. C 2013 , 117 , 24375 • Challenge: Large discrepancies of current zeolite force fields for adsorption of polar guest molecules • Target: non-polar, polar, and H-bonding guest molecules in all-silica zeolites • LJ sites on both Si & O to achieve better balance between dispersive and H-bonding interactions • A three-step, grid-based search in 5-dimensional parameter space requiring ≈50,000 simulations ethanol CO 2 heptane

  16. Adsorptive Separation: Gas Phase W W Angew. Chem. Int. Ed. 2016 , 55 , 5938

  17. Adsorption – Alcohol/Water in Silicalite-1 1 2 3 4 Adsorption of H 2 O in MFI 10 10 10 10 1.0 20 alcohol(+water), sim water(+alcohol), sim 0.8 alcohol(+water), IAST 15 water(+alcohol), IAST 1.0 N [molec/uc] alcohol(pure), sim 0.6 0.9 x alcohol, ads 10 x alcohol, ads methanol 0.8 0.4 5 0.7 0.6 0.2 0 0.00 0.02 0.04 0.06 0.08 x alcohol, sol 0.0 12 4 10 N [molec/uc] methanol, 298 K ethanol, 298 K 8 methanol, 323 K ethanol, 323 K ethanol 3 10 S alcohol 4 2 IAST overestimates 10 0 1 2 3 4 10 10 10 10 separation factors for p alcohol [Pa] IAST: Myers & Prausnitz, 1 10 methanol and ethanol AIChE J ., 1965 , 11 , 121 by about 5000 0 0.2 0.4 0.6 0.8 1 x alcohol, sol Bai et al. , Langmuir 2012 , 28 , 15566; J. Phys. Chem. C 2013 , 117 , 24375

  18. Adsorptive Separation – Adsorbent Screening Ø Screening of 402 IZA-SC structures at w = 0.12% and for top-64 structures at 5 higher concs Ø Screening yields large number of frameworks that outperform MFI (ranked 15 – 26) Ø Processes may exploit FER ’s high selectivity to extract 90% of EtOH contained in a 5 wt% fermentation broth by adsorptive separation reaching down to raffinate conc of w ≈ 0.5 wt% Ø Processes using ATN* may exploit its higher EtOH loading and reduce feed mixture from initial w ≈ 15% down to 5 wt% and recycle the raffinate back to the fermentation broth Bai, Jeon, Ren, Knight, Deem, Tsapatsis & Siepmann, Nature Commun . 2015 , 6 , 5912

Recommend


More recommend