observations during chuva
play

observations during CHUVA H. Hller 1 , H.-D. Betz 2,3 , C. Morales 4 - PowerPoint PPT Presentation

Ground-based and space-borne lightning observations during CHUVA H. Hller 1 , H.-D. Betz 2,3 , C. Morales 4 , R.J. Blakeslee 5 , J.C. Bailey 6 , R.I. Albrecht 7 (1) DLR, Institut fr Physik der Atmosphre, Germany, (2) Physics Department,


  1. Ground-based and space-borne lightning observations during CHUVA H. Höller 1 , H.-D. Betz 2,3 , C. Morales 4 , R.J. Blakeslee 5 , J.C. Bailey 6 , R.I. Albrecht 7 (1) DLR, Institut für Physik der Atmosphäre, Germany, (2) Physics Department, University of Munich, Germany, (3) nowcast GmbH, Munich, Germany, (4) Universidade de São Paulo, Instituto de Astronomia, Geofisica e Ciências Atmosféricas, São Paulo, Brazil, (5) NASA Marshall Space Flight Center, Huntsville, USA, (6) University of Alabama, Huntsville, USA, (7) Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, Brazil Institut für Physik der Atmosphäre

  2. MTG and GOES-R New Geostationary Satellite Systems Meteosat Third Generation > 2018 Geostationary Operational Environmental Satellite-R Series (GOES-R) > 2015 Institut für Physik der Atmosphäre Slide 2 > > Hartmut Höller

  3. TRMM (Tropical Rainfall Measuring Mission) TRMM Instruments  Visible and InfraRed Scanner (VIRS)  TRMM Microwave Imager (TMI)  Precipitation Radar (PR)  Lightning Imaging Sensor (LIS) Institut für Physik der Atmosphäre Slide 3 > > Hartmut Höller

  4. Flash Types and Emissions CG, IC and VLF/LF, VHF, Light Optical Pulse Intra-cloud (IC) and cloud-to- ground flashes emit VLF/LF, VHF and optical radiation Long wavelength VLF/LF signals have one or several source Optical Pulse points per flash arising from long channel segments Short wavelength VHF signal Optical Pulse have many source points per flash and allow for reconstructing short scale channel details Institut für Physik der Atmosphäre Slide 4 > EUMETSAT 2010 > Hartmut Höller

  5. LINET (Lightning Detection Network) System Characteristics  Measurement of magnetic field  TOA Method for lightning location IC - CG  discrimination  Height of IC events Institut für Physik der Atmosphäre Slide 5 > EUMETSAT 2010 > Hartmut Höller

  6. LMA and LINET Sites XPOL and operational radars LMA and LINET LMA and LINET configuration, XPOL and operational radars Institut für Physik der Atmosphäre Slide 6 > > Hartmut Höller

  7. LINET Sites CHUVA, Sao Paulo Institut für Physik der Atmosphäre Slide 7 > I > Hartmut Höller

  8. LIS Overpasses Summary ((29.10.2011 23:36 UTC)) 15. 11.2.2012 18:10 UTC 1. (11.11.2011 16:24 UTC) 16. (14.2.2012 17:01 UTC) 2. ((7.12.2011 20:15 UTC)) 17. 27.2.2012 03:15 UTC 3. ((10.12.2011 02:40 UTC)) 18. 11.3.2012 20:50 UTC 4. (28.12.2011 17:11 UTC) 19. 12.3.2012 19:54 UTC 5. (17.1.2012 23:19 UTC) 20. (15.3.2012 18:45 UTC) 6. 19.1.2012 23:03 UTC 21. 27.3.2012 19:07 UTC 7. (20.1.2012 22:10 UTC) 22. ((30.3.2012 17:55 UTC)) 8. (21.1.2012 21:16 UTC) 9. 10. (23.1.2012 21:00 UTC) Priority 11. 24.1.2012 20:02 UTC High 12. 7.2.2012 20:13 UTC Normal 13. 8.2.2012 19:17 UTC (Low) 14. 10.2.2012 19:05 UTC ((lowest)) Institut für Physik der Atmosphäre Slide 8 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  9. Case Studies 27 March 2012 Institut für Physik der Atmosphäre Slide 9 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  10. Case Studies 10 Feb 2012 Institut für Physik der Atmosphäre Slide 10 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  11. Case Studies 10 Feb 2012 Institut für Physik der Atmosphäre Slide 11 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  12. Case Studies 10 Feb 2012 Institut für Physik der Atmosphäre Slide 12 > IPA Seminar 25 Okt 2010 > Hartmut Höller

  13. Case Studies 7 Feb 2012 XPOL Radar 20:10 UTC Institut für Physik der Atmosphäre Slide 13 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  14. Case Studies 7 Feb 2012 Institut für Physik der Atmosphäre Slide 14 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  15. Case Studies 7 Feb 2012 Flash 01 Institut für Physik der Atmosphäre Slide 15 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  16. Case Studies 7 Feb 2012 Flash 01 Institut für Physik der Atmosphäre Slide 16 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  17. Case Studies 7 Feb 2012 Flash 01 LIS group radiance LMA and LINET source height No optical signal from low level part of flash Institut für Physik der Atmosphäre Slide 17 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  18. Case Studies 7 Feb 2012 Flash 06 Institut für Physik der Atmosphäre Slide 18 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  19. Case Studies 7 Feb 2012 Flash 06 Institut für Physik der Atmosphäre Slide 19 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  20. Case Studies 7 Feb 2012 Flash 06 LIS group radiance LMA and LINET source height No optical signal from low level part of flash Institut für Physik der Atmosphäre Slide 20 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  21. Case Studies 08 Feb 2012 Institut für Physik der Atmosphäre Slide 21 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  22. Case Studies 08 Feb 2012 Institut für Physik der Atmosphäre Slide 22 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  23. Case Studies 08 Feb 2012 LIS Flash 137 LIS group radiance LMA and LINET source strengths correlate to some extent Institut für Physik der Atmosphäre Slide 23 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  24. Case Studies 19 Jan 2012 Time differences of closest LINET-LIS signals LMA followed by LINET and LIS LINET and LIS correspond well LMA-LINET LMA-LIS Institut für Physik der Atmosphäre Slide 24 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  25. Modeling of MTG-LI Optical Signals Model Strategy Transformation of LINET RF stroke data into optical groups by a 2-step process:  Model of cloud top optical emission • Number of optical flashes equals number of LINET flashes • One direct coincident optical group per LINET stroke • Distribution of additional optical groups per LINET flash according to a log-normal model for radiance, footprint and time  Projection of group areas to optical plane of LI pixel matrix Generation of optical events from RF stroke data Institut für Physik der Atmosphäre Slide 25 > GLM-CHUVA April 2013> Hartmut Höller

  26. LIS Groups per LINET Stroke Relation to Network Sensitivity LIS groups per LINET stroke (GPS) from coincident flash observations for LIS overpasses in different areas CHUVA data add additional information in the low peak current regime Institut für Physik der Atmosphäre Slide 26 > GLM-CHUVA April 2013> Hartmut Höller

  27. Summary and Conclusions (1)  CHUVA lightning campaign was very successful with respect to the objectives 7 months (Oct 2011 – April 2012) of lightning data available • for analysis complemented by XPOL radar data • 4-6 good cases with LIS overpasses of the inner network area (more than 20 cases in a wider area)  As found in previous study, LINET strokes and LIS groups are often coincident  LINET strokes map the flash branches similar to LMA (but with considerably less data points)  An initial breakdown phase of vertically propagating sources can be often found in LINET and LMA data Institut für Physik der Atmosphäre Slide 27 > LIST Meeting Helsinki 20121023 > Hartmut Höller

  28. Summary and Conclusions (2)  Higher level LINET and LMA signals have higher probability to be optically detected  Lower level LINET and LMA signals are optically detected from above in case of missing high level precipitation (e.g. from radar)  XPOL radar helps in interpretation of 3D cloud structure important for scattering of light  Improvement of proxy data generation • a small baseline (~30 km) LINET configuration provided a high DE network thus closing the gap in coverage at weak LINET strokes (flashes) • The number of LIS groups per LINET stroke should not be considered as constant but rather as dependent on minimum peak current Institut für Physik der Atmosphäre Slide 28 > LIST Meeting Helsinki 20121023 > Hartmut Höller

Recommend


More recommend