numerical solution of vector valued phase field models
play

Numerical Solution of Vector-Valued Phase Field Models Carsten Gr - PowerPoint PPT Presentation

Numerical Solution of Vector-Valued Phase Field Models Carsten Gr aser, Ralf Kornhuber, and Uli Sack (FU Berlin) DIMO 2013 Diffuse Interface Models Levico Terme, September 10 13, 2013 Matheon Synopsis phase transition and phase


  1. Numerical Solution of Vector-Valued Phase Field Models Carsten Gr¨ aser, Ralf Kornhuber, and Uli Sack (FU Berlin) DIMO 2013 – Diffuse Interface Models Levico Terme, September 10 – 13, 2013 Matheon

  2. Synopsis • phase transition and phase separation • vector-valued Allen-Cahn equations (Bronsard & Reitich 93, Garcke et al. 98, 99a, 99b) – robust formulation of discrete spatial problems (logarithmic � obstacle potential) – polygonal Gauß-Seidel relaxation (Kh. & Krause 03, 06) – truncated non-smooth Newton multigrid (TNNMG) (Gr¨ aser & Kh. 09, Gr¨ aser 11) – numerical experiments • vector-valued Cahn-Hilliard equations (Blowey et al. 96, Barret & Blowey 96, 97, Gr¨ aser, Kh. & Sack 13) – robust formulation of discrete spatial problems – truncated Schur Newton methods (Gr¨ aser & Kh. 06, 09, Gr¨ aser 08, 11) – numerical experiments

  3. Ginzburg-Landau Approach to Phase Transition/Separation ε |∇ u | 2 + 1 � Ginzburg-Landau free energy: E ( u ) = ε Ψ θ ( u ) dx Ω order parameter (phase field): u ∈ [ − 1 , +1] diffuse interface: Γ ε = { x ∈ Ω | u ( x ) ∈ ( u a , u b ) } , binodal values u a , u b ∈ [ − 1 , 1] logarithmic free energy: (Giacomin & Lebowitz 98) Ψ ′ 500 θ 400 300 Ψ θ ( u ) = 1 2 θ ((1 − u ) ln( 1 − u 2 ) 200 100 + (1 + u ) ln( 1+ u 2 θ c (1 − u 2 ) 2 )) + 1 0 −100 −200 critical temperature θ c temperature θ , −300 −400 deep quench limit: θ → 0 ⇒ Ψ θ → Ψ 0 −500 −1.5 −1 −0.5 0 0.5 1 1.5 u

  4. Phase Field Models isothermal case: θ = const . phase transition: Allen-Cahn equation (non-conserving) εu t = − d du E ( u ) = ε ∆ u − 1 ε Ψ ′ θ ( u ) (Cahn 60, Allen & Cahn 77) phase separation: Cahn-Hilliard equations (conserving) du E ( u ) = − ε ∆ u + 1 d ε Ψ ′ εu t = ∆ w, w = θ ( u ) (Cahn & Hilliard 58) d dt E ( u ( t )) ≤ 0 Lyapunov functional: deep quench limit θ = 0 : variational inequalities robustness of numerical solvers for θ → 0 (Kh. & Krause 03, 06, Gr¨ aser & Kh. 09, Gr¨ aser 11)

  5. Phase Field Models isothermal case: θ = const . phase transition: Allen-Cahn equation (non-conserving) εu t = − d du E ( u ) = ε ∆ u − 1 ε Ψ ′ θ ( u ) (Cahn 60, Allen & Cahn 77) phase separation: Cahn-Hilliard equations (conserving) du E ( u ) = − ε ∆ u + 1 d ε Ψ ′ εu t = ∆ w, w = θ ( u ) (Cahn & Hilliard 58) d dt E ( u ( t )) ≤ 0 Lyapunov functional: deep quench limit θ = 0 : variational inequalities robustness of numerical solvers for θ → 0 (Kh. & Krause 03, 06, Gr¨ aser & Kh. 09, Gr¨ aser 11)

  6. N Phases concentrations: u 1 , . . . , u N u = ( u 1 , . . . , u N ) ∈ R N vector-valued phase field: N u ( x, t ) ∈ G = { v ∈ R N | 0 ≤ v i , � Gibbs simplex: v i = 1 } (closed, convex) i =1 u 3 u 2 �������������� �������������� G �������������� �������������� �������������� �������������� �������������� �������������� u 2 �������������� �������������� �������������� �������������� G �������������� �������������� N=2: N=3: �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� �������������� u 1 �������������� �������������� �������������� �������������� �������������� �������������� u 1

  7. Ginzburg-Landau Free Energy N ε |∇ u i | 2 + 1 � � E ( u ) = ε Ψ θ ( u ) dx, ε > 0 2 Ω i =1 Ψ θ ( u ) = Φ θ ( u ) + χ H 1 ( u ) + θ cN multi-well potential: 2 Cu · u  N �  θu i ln( u i ) + χ [0 , ∞ ) ( u i ) , θ > 0  Φ θ ( u ) = i =1  χ [0 , ∞ ) ( u i ) , θ = 0  H 1 = { v ∈ R N | � N i =1 v i = 1 } critical temperature: θ c = 1 C = (1 − δ ij ) N symmetric interaction matrix: i,j =1

  8. Vector-Valued Allen-Cahn Equations projected L 2 -gradient flow of E : N 11 ⊤ ∈ R N × N , εu t = ε ∆ u − 1 ε P Ψ ′ P = I − 1 θ ( u ) , θ > 0 parabolic variational inequality (Bronsard & Reitich 93, Garcke et al. 98, 99a, 99b) : u ( t ) ∈ G : ε ( u t , v − u ) + ε ( ∇ u, ∇ ( v − u )) θ ≥ 0 + 1 ε ( φ θ ( v ) − φ θ ( u )) − N 1 ε ( u, v − u ) ≥ 0 ∀ v ∈ G � proper convex, lower semi-continuous functional: φ θ ( v ) = Ω Φ θ ( v ( x )) dx � N | v ( x ) ∈ G a.e. in Ω � � H 1 (Ω) � Gibbs constraints: G = v ∈

  9. Discretization implicit Euler discretization: stepsize τ linear finite elements S N : j triangulation T j , meshsize h j = O (2 − j ) , nodes N j , nodal basis λ ( j ) of S j p discrete spatial problems: u j ∈ G j : ( u j , v − u j ) + τ ( ∇ u j , ∇ ( v − u j )) + τ ε 2 ( φ θ,j ( v ) − φ θ,j ( u )) − N τ ε 2 ( u j , v − u j ) ≥ ( u old j , v − u j ) ∀ v ∈ G j � quadrature rule (lumping): φ θ,j = Ω I S N j Φ θ ( v ) dx v ∈ S N � � G j = j | v ( p ) ∈ G ∀ p ∈ N j discrete Gibbs constraints:

  10. Discretization implicit Euler discretization: stepsize τ linear finite elements S N : j triangulation T j , meshsize h j = O (2 − j ) , nodes N j , nodal basis λ ( j ) of S j p discrete spatial problems: u j ∈ G j : ( u j , v − u j ) + τ ( ∇ u j , ∇ ( v − u j )) + τ ε 2 ( φ θ,j ( v ) − φ θ,j ( u )) − N τ ε 2 ( u j , v − u j ) ≥ ( u old j , v − u j ) ∀ v ∈ G j � quadrature rule (lumping): φ θ,j = Ω I S N j Φ θ ( v ) dx v ∈ S N � � G j = j | v ( p ) ∈ G ∀ p ∈ N j discrete Gibbs constraints:

  11. Discretization stepsize τ < ε 2 implicit Euler discretization: N linear finite elements S N : j triangulation T j , meshsize h j = O (2 − j ) , nodes N j , nodal basis λ ( j ) of S j p discrete spatial problems: u j ∈ G j : ( u j , v − u j ) + τ ( ∇ u j , ∇ ( v − u j )) + τ ε 2 ( φ θ,j ( v ) − φ θ,j ( u )) − N τ ε 2 ( u j , v − u j ) ≥ ( u old j , v − u j ) ∀ v ∈ G j � quadrature rule (lumping): φ θ,j = Ω I S N j Φ θ ( v ) dx v ∈ S N � � G j = j | v ( p ) ∈ G ∀ p ∈ N j discrete Gibbs constraints:

  12. Convex Minimization variational inequality: a ( u j , v − u j ) + τ u j ∈ G j : ε 2 ( φ j ( v ) − φ j ( u )) ≥ ℓ ( v − u j ) ∀ v ∈ G j a ( v, w ) = (1 − N τ ( H 1 (Ω)) N -elliptic bilinear form: ε 2 )( v, w ) + τ ( ∇ v, ∇ w ) ℓ ( v ) = ( u old linear functional: j , v ) equivalent reformulation: u j ∈ G j : J ( u j ) ≤ J ( v ) ∀ v ∈ G j J ( v ) = 1 2 a ( v, v ) + τ ε 2 φ j ( v ) − ℓ ( v ) strictly convex energy:

  13. Polygonal Gauß-Seidel Relaxation (Kh. & Krause 03) descent directions: λ ( j ) p E m , p ∈ N j , m = 1 , . . . , M edge vectors of G : E 2 E 3 G E 1 , . . . , E M ∈ R N , M := N ( N − 1) = O ( N 2 ) 2 E 1 complexity: O ( N 2 n j ) global convergence (Kh., Krause & Ziegler 06) ρ j = 1 − O (2 − j ) exponentially deteriorating convergence speed:

  14. Polygonal Gauß-Seidel Relaxation (Kh. & Krause 03) descent directions: λ ( j ) p E m , p ∈ N j , m = 1 , . . . , M edge vectors of G : E 2 E 3 G E 1 , . . . , E M ∈ R N , M := N ( N − 1) = O ( N 2 ) 2 E 1 successive minimization of J + χ G j on 1-D subspaces span { λ ( j ) p E m } , p ∈ N j , m = 1 , . . . , M complexity: O ( N 2 n j ) global convergence (Kh., Krause & Ziegler 06) ρ j = 1 − O (2 − j ) exponentially deteriorating convergence speed:

  15. Polygonal Gauß-Seidel Relaxation (Kh. & Krause 03) descent directions: λ ( j ) p E m , p ∈ N j , m = 1 , . . . , M edge vectors of G : E 2 E 3 G E 1 , . . . , E M ∈ R N , M := N ( N − 1) = O ( N 2 ) 2 E 1 successive minimization of J + χ G j on 1-D subspaces span { λ ( j ) p E m } , p ∈ N j , m = 1 , . . . , M complexity: O ( N 2 n j ) global convergence (Kh., Krause & Ziegler 06) ρ j = 1 − O (2 − j ) exponentially deteriorating convergence speed:

Recommend


More recommend