numerical methods for the best low multilinear rank
play

Numerical methods for the best low multilinear rank approximation of - PowerPoint PPT Presentation

Introduction Some applications Algorithms Local minima Numerical methods for the best low multilinear rank approximation of higher-order tensors M. Ishteva 1 .-A. Absil 1 S. Van Huffel 2 L. De Lathauwer 2 , 3 P 1 Department of Mathematical


  1. Introduction Some applications Algorithms Local minima Numerical methods for the best low multilinear rank approximation of higher-order tensors M. Ishteva 1 .-A. Absil 1 S. Van Huffel 2 L. De Lathauwer 2 , 3 P 1 Department of Mathematical Engineering, Université catholique de Louvain 2 Department of Electrical Engineering ESAT/SCD, K.U.Leuven 3 Group Science, Engineering and Technology, K.U.Leuven Campus Kortrijk CESAME seminar, February 9, 2010

  2. Introduction Some applications Algorithms Local minima Outline Introduction 1 Some applications 2 Epileptic seizure onset localization Parameter estimation Algorithms 3 Geometric Newton algorithm Trust-region based algorithm Conjugate gradient based algorithm Local minima 4

  3. Introduction Some applications Algorithms Local minima Outline Introduction 1 Some applications 2 Epileptic seizure onset localization Parameter estimation Algorithms 3 Geometric Newton algorithm Trust-region based algorithm Conjugate gradient based algorithm Local minima 4

  4. Introduction Some applications Algorithms Local minima Scalars 4 67 R 2 3 . 23 − 45 . 8 √ 2 − 14 / 8 − 339 / 7534 − 4 . 397534

  5. Introduction Some applications Algorithms Local minima Vectors 4 R n 15 − 45 . 3 12 . 345 1 . 3 1 . 7 2 . 1 1 . 4 0 . 2 65 − 15 − 23 . 44

  6. Introduction Some applications Algorithms Local minima Matrices R m × n 1 . 3 0 . 6 1 . 1 2 . 0 1 . 9 1 . 7 1 . 0 1 . 3 2 . 8 2 . 6 2 . 1 2 . 1 1 . 6 3 . 7 2 . 7 1 . 4 1 . 4 1 . 4 2 . 2 2 . 0 0 . 2 1 . 3 0 . 9 1 . 9 1 . 7

  7. Introduction Some applications Algorithms Local minima Tensors R m × n × p

  8. Introduction Some applications Algorithms Local minima Ranks Rank- ( R 1 , R 2 , R 3 ) Rank- R • Rank-1 tensor: r � • R = min ( r ) , s.t. A = {rank-1 tensor} i i = 1 In general, R 1 � = R 2 � = R 3 � = R 1 and R 1 , R 2 , R 3 ≤ R .

  9. Introduction Some applications Algorithms Local minima Decompositions Singular value decomposition (SVD) Higher-order SVD (HOSVD) PARAFAC/CANDECOMP

  10. Introduction Some applications Algorithms Local minima Main problem Truncated SVD → Best rank- R approximation of a matrix Truncated HOSVD → Good but not best rank- ( R 1 , R 2 , R 3 ) approximation of a tensor Best rank- ( R 1 , R 2 , R 3 ) approximation of a tensor: third-order tensor A ∈ R I 1 × I 2 × I 3 Given: �A − ˆ A� 2 minimize ˆ A ∈ R I 1 × I 2 × I 3 rank 1 ( ˆ subject to: A ) ≤ R 1 , rank 2 ( ˆ A ) ≤ R 2 , rank 3 ( ˆ A ) ≤ R 3

  11. Introduction Some applications Algorithms Local minima Reformulation of the main problem third-order tensor A ∈ R I 1 × I 2 × I 3 Given: �A • 1 U T • 2 V T • 3 W T � 2 = � U T A ( 1 ) ( V ⊗ W ) � 2 maximize U ∈ St ( R 1 , I 1 ) V ∈ St ( R 2 , I 2 ) W ∈ St ( R 3 , I 3 ) A = A • 1 UU T • 2 VV T • 3 WW T . Then ˆ Notation : St ( R , I ) = { X ∈ R I × R : X T X = I }

  12. Introduction Some applications Algorithms Local minima Higher-order orthogonal iteration (HOOI) Initial values: HOSVD. To maximize � U T A ( 1 ) ( V ⊗ W ) � 2 ( ∗ ) , iterate until convergence: optimize ( ∗ ) over U : left dominant subspace of A ( 1 ) ( V ⊗ W ) � columns of U optimize ( ∗ ) over V , optimize ( ∗ ) over W . → Linear convergence

  13. Introduction Some applications Algorithms Local minima Goal and motivation Goal: conceptually faster algorithms matrix-based algorithms → tensor-based algorithms optimization w.r.t. numerical accuracy & comput. efficiency Applications of the best rank- ( R 1 , R 2 , R 3 ) approximation Chemometrics, biomedical signal processing, telecommunications, etc. Dimensionality reduction; signal subspace estimation

  14. Introduction Some applications Algorithms Local minima Outline Introduction 1 Some applications 2 Epileptic seizure onset localization Parameter estimation Algorithms 3 Geometric Newton algorithm Trust-region based algorithm Conjugate gradient based algorithm Local minima 4

  15. Introduction Some applications Algorithms Local minima Outline Introduction 1 Some applications 2 Epileptic seizure onset localization Parameter estimation Algorithms 3 Geometric Newton algorithm Trust-region based algorithm Conjugate gradient based algorithm Local minima 4

  16. Introduction Some applications Algorithms Local minima Electrodes

  17. Introduction Some applications Algorithms Local minima Electroencephalogram

  18. Introduction Some applications Algorithms Local minima Epileptic seizure onset localization: results of PARAFAC with 2 atoms temporal component frequency component spatial component temporal atom of seizure activity frequency distribution of seizure activity 0.06 0.18 0.16 0.04 0.14 0.02 0.12 0.1 0 0.08 −0.02 0.06 0.04 −0.04 0.02 −0.06 0 0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20 25 30 35 40 45 Time (sec) Freq (Hz) temporal atom of eye−blink activity frequency distribution of eye−blink activity 0.12 0.2 0.1 0.18 0.08 0.16 0.06 0.14 0.04 0.12 0.02 0.1 0 0.08 −0.02 0.06 −0.04 0.04 −0.06 0.02 −0.08 0 1 2 3 4 5 6 7 8 9 10 0 0 5 10 15 20 25 30 35 40 45 Time (sec) Freq (Hz) red atom: related to the seizure, blue atom: related to the eye blinks.

  19. Introduction Some applications Algorithms Local minima Dimensionality reduction A Rank- ( R 1 , R 2 , R 3 ) approx. Rank- R approx.

  20. Introduction Some applications Algorithms Local minima Outline Introduction 1 Some applications 2 Epileptic seizure onset localization Parameter estimation Algorithms 3 Geometric Newton algorithm Trust-region based algorithm Conjugate gradient based algorithm Local minima 4

  21. Introduction Some applications Algorithms Local minima Problem formulation: Multi-channel case x (3) x (3) x (3) x (3) x (3) . 0 1 2 3 M − 1 . . x (3) x (2) x (2) x (2) x (2) x (2) ch 3 3 0 1 2 3 M − 1 x (3) x (3) x (3) x (3) x (3) x (3) x (3) · · · x (2) 0 1 2 3 4 5 x (1) x (1) x (1) x (1) x (1) 4 1 0 1 2 3 M − 1 x (3) x (2) x (1) ch 2 5 2 1 x (2) x (2) x (2) x (2) x (2) x (2) x (2) x (1) · · · 0 1 2 3 4 5 3 x (3) x (3) 2 L − 1 N − 1 x (1) ch 1 3 x (2) x (2) L − 1 N − 1 x (1) x (1) x (1) x (1) x (1) x (1) · · · 0 1 2 3 4 5 x (1) x (1) L − 1 N − 1 x ( q ) k = 1 c ( q ) k + e ( q ) � K k z n = n n � K k = 1 a ( q ) exp { j ϕ ( q ) k } exp { ( − α k + 2 j πν k ) t n } + e ( q ) = . n k samples x ( q ) Given: n , n = 0 ,..., N − 1 , q = 1 ,..., Q estimates of the complex amplitudes c ( q ) Find: and the poles z k . k

  22. Introduction Some applications Algorithms Local minima HO-HTLSstack algorithm Compute the best rank- ( K , K , R 3 ) approx. ( R 3 ≤ min ( K , Q ) ) , ˆ H = S • 1 U • 2 V • 3 W . U ↑ ≈ U ↓ Z . Compute the eigenvalues λ k of Z : Estimate the poles: ˆ z k = λ k . Estimate the complex amplitudes: z k , x ( q ) c ( q ) ˆ → ˆ k . n

  23. Introduction Some applications Algorithms Local minima Observations  c Q .  1 .  . . .  c 3 .  1 c 2 · · · . 1 . c Q  c 1 . . . 1 K . . . . . H .  c 3 .  K =  c 2  K 1  c 1 · · · K  1 z 1   · · · 1   z 2 z K 1 1  1 · · ·  z 1 . z 2  . z 2   . K .  . 1 · .  · ·  . . 1 · . . z M · · . .  .  z L 1 . .  1 1 · · · · . ·  z K · . z L z 2 .  K K · · ·  z M K If the matrix of the amplitudes is ill-conditioned then reduce the mode-3 rank,

  24. Introduction Some applications Algorithms Local minima Outline Introduction 1 Some applications 2 Epileptic seizure onset localization Parameter estimation Algorithms 3 Geometric Newton algorithm Trust-region based algorithm Conjugate gradient based algorithm Local minima 4

  25. Introduction Some applications Algorithms Local minima Outline Introduction 1 Some applications 2 Epileptic seizure onset localization Parameter estimation Algorithms 3 Geometric Newton algorithm Trust-region based algorithm Conjugate gradient based algorithm Local minima 4

  26. Introduction Some applications Algorithms Local minima Reformulation g = � U T A ( 1 ) ( V ⊗ W ) � 2 , X = ( U , V , W ) , R 1 ( X ) = U T A ( 1 ) ( V ⊗ W ) . New goal F ( X ) ≡ ( F 1 ( X ) , F 2 ( X ) , F 3 ( X )) = 0 , F 1 ( X ) = U R 1 ( X ) R 1 ( X ) T − A ( 1 ) ( V ⊗ W ) R 1 ( X ) T . Invariance property F ( X ) = 0 ⇔ F ( XQ ) = 0 , XQ = ( UQ 1 , VQ 2 , WQ 3 ) , Q i –orth. ⇒ the zeros of F are not isolated ⇒ convergence issues → Work on R I 1 × R 1 / O R 1 × R I 2 × R 2 / O R 2 × R I 3 × R 3 / O R 3 . ∗ ∗ ∗

Recommend


More recommend