numerical methods for ill posed problems iii lothar
play

Numerical Methods for Ill-Posed Problems III Lothar Reichel Summer - PowerPoint PPT Presentation

Numerical Methods for Ill-Posed Problems III Lothar Reichel Summer School on Applied Analysis TU Chemnitz, Oct. 4-8, 2010 1 Outline of Lecture 3: Tikhonov regularization of large-scale problems The discrepancy principle Solution


  1. Semi-discretization of Euler-Lagrange equation: du dt = ( µL ( u ) − A 2 ) u + Ab, where L ( u ) a nonlinear operator. • Explicit integration method (Euler): CFL condition imposes tiny time steps ⇒ method expensive • Semi-implicit integration method: [ I − τ ( µL ( u j − 1 ) − A 2 )] u j = u j − 1 + τAb, where u j ≈ u ( jτ ). System expensive to solve and small time steps τ required ⇒ method expensive 41

  2. Use Perona-Malik operator D to define a nonlinear prolongation operator for the multilevel scheme. Discretization of ∂u ∂t = D ( u ) gives du dt = L ( u ) u, u ∈ W i , u (0) = P i u i − 1 . May integrate for a few, say ≤ 10, (non-tiny) time steps by explicit method. 42

  3. Cascadic multilevel methods 43

  4. Consider � t ∈ Ω Ω k ( s, t ) x ( s ) ds = b ( t ) , Let W 1 ⊂ W 2 ⊂ . . . ⊂ W ℓ ⊂ L 2 (Ω) nested subspaces R i : L 2 (Ω) → W i restriction operator Q ∗ prolongation operator, e.g., Q ∗ i = R ∗ → : W i L 2 (Ω) i i ˆ b i = R i ˆ A i = R i AQ ∗ b, b i = R i b, i P i : W i − 1 → W i prolongation operator 44

  5. Algorithm 1 Multilevel Algorithm Input: A , b , δ , ℓ ≥ 1 (number of levels); Output: approximate solution ˜ x ∈ W ℓ ; Determine A i and b i for 1 ≤ i ≤ ℓ ; x 0 := 0 ; for i := 1 , 2 , . . . , ℓ do x i, 0 := P i x i − 1 ; ∆ x i,m i := IM ( A i , b i − A i x i, 0 ) ; Correction step: x i := x i, 0 + ∆ x i,m i ; endfor x := x ℓ ; ˜ 45

  6. Noise reducing restrictions R i : Solve weighted local least-squares problems (inspired by Buades et al.): 1D problems: Define M i : W i → W i − 1 by solving � 2 ω (2 j ) � x (2 j + s ) � min − ( a 0 + a 1 s ) ( s ) ∀ j i i a 0 ,a 1 s ∈{ 0 , ± 1 } where � � 2 � ω (2 j ) � x (2 j + s ) − x (2 j ) − γ ( s ) := exp , γ > 0 i i i 46

  7. Solution { ˆ a 1 } . a 0 , ˆ Let x ( j ) i − 1 := ˆ a 0 for all j . Define 1 ≤ i < ℓ. R i = M i +1 M i +2 . . . M ℓ , 2D problems: 47

  8. Pixel mask for 2D problems (2j−1,2k−1) (2j−1,2k) (2j−1,2k+1) (2j,2k) (2j,2k−1) (2j,2k+1) (2j+1,2k−1) (2j+1,2k) (2j+1,2k+1) 48

  9. Assume that � ˆ b − b � = δ. Then, under some simplifying assumptions, such as γ = 0, one can show that for 1D problems one can expect the projected errors to satisfy the bounds c i = 1 � ˆ √ b i − b i � ≤ c i δ, 1 ≤ i < ℓ, 3 c i +1 , c ℓ = 1 . For 2D problems, c i = 1 3 c i +1 . 49

  10. Edge preserving nonlinear prolongation The operator P i consists of two parts: x i − 1 ∈ W i − 1 → L i x i − 1 ∈ W i piecewise linear interpolation L i x i − 1 is smoothed by solving an IBVP for a (discretized) Perona-Malik diffusion equation,   2   � � ∂x ∂τ = ∂ ∂  ∂ � �  ,  ψ ′ a ≤ s ≤ b, ∂sx ∂sx x = x ( τ, s ) , � �  ∂s � � � � over a short τ -interval with ψ ′ ( s ) = ρ/ ( s + ρ ), ρ > 0. This removes noise and preserves edges. 50

  11. Theorem: Let � ˆ b i − b i � ≤ c i δ i , c i > 1 , 1 ≤ i ≤ ℓ. Assume that the P i are linear(ized) and that R ( P i ) ⊂ R ( A ∗ 2 ≤ i ≤ ℓ. i ) , Then || ˆ x i − x i,m i ( δ i ) || = 0 , 1 ≤ i ≤ ℓ, lim sup δ i ց 0 || ˆ b i − b i ||≤ c i δ i i ˆ x i = A † where ˆ b i . Thus, the multilevel is a regularization method. 51

  12. Examples: Noise reduction by Perona-Malik integration Example 2: Signal contaminated by 1% Gaussian noise. The noise-free signal is smooth. 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 −0.01 0 50 100 150 200 250 300 350 400 450 500 52

  13. Example 2: Signal denoised by integrating the Perona-Malik equation 10 steps of size ∆ τ = 0 . 3. 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 −0.01 0 50 100 150 200 250 300 350 400 450 500 53

  14. Example 3: Signal contaminated by 1% Gaussian noise. The noise-free signal is piecewise constant. 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 −0.01 0 100 200 300 400 500 600 54

  15. Example 3: Signal denoised by integrating the Perona-Malik equation 10 steps of size ∆ τ = 0 . 3. 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 −0.01 0 100 200 300 400 500 600 55

  16. Example 4: Signal contaminated by 10% Gaussian noise. The noise-free signal is piecewise constant. 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 −0.01 −0.02 0 100 200 300 400 500 600 56

  17. Example 4: Signal denoised by integrating the Perona-Malik equation. 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 −0.01 0 100 200 300 400 500 600 57

  18. Example 5: Fredholm integral equation of the 1st kind � π 0 exp( − st ) x ( t ) dt = 2sinh( s ) 0 ≤ s ≤ π , 2; s same as in Example 1. Discretization by Galerkin method using 512 piecewise constant test and trial functions. Relative error ν . Matrix sizes for 5-level method: R 32 × 32 , A 2 ∈ R 64 × 64 , A 3 ∈ R 128 × 128 , ∈ A 1 R 256 × 256 , A = A 5 ∈ R 512 × 512 . ∈ A 4 Minimal residual Iterative method for symmetric problems. 58

  19. P i L i ℓ ν � ˜ x − ˆ x � / � ˆ x � # iter � ˜ x − ˆ x � / � ˆ x � # iter 1 · 10 − 2 3 . 51 · 10 − 2 1 3 1 · 10 − 2 3 . 26 · 10 − 2 3 . 41 · 10 − 2 2 3 1 3 1 1 · 10 − 2 3 . 10 · 10 − 2 3 . 41 · 10 − 2 3 3 1 1 3 1 1 1 · 10 − 2 2 . 51 · 10 − 2 3 . 35 · 10 − 2 5 3 2 1 1 1 3 2 1 1 1 1 · 10 − 3 3 . 53 · 10 − 2 1 3 1 · 10 − 3 3 . 34 · 10 − 2 3 . 57 · 10 − 2 2 3 1 3 1 1 · 10 − 3 3 . 08 · 10 − 2 3 . 56 · 10 − 2 3 3 2 1 3 2 1 1 · 10 − 3 2 . 00 · 10 − 2 3 . 50 · 10 − 2 5 3 2 2 3 1 3 2 2 2 1 59

  20. Example 6: Signal deblurring by solution of Fredhom integral equation of the 1st kind with a Gaussian convolution kernel. Discretization gives symmetric Toeplitz matrices. Relative error 10%. Matrix sizes for 3-level method: A 1 ∈ R 128 × 128 , A 2 R 256 × 256 , A = A 3 ∈ R 512 × 512 ∈ κ ( A ) = 1 · 10 17 . Iterative method: MR-II 60

  21. Example 6: Signal contaminated by 10% Gaussian noise and blur. The noise-free signal is piecewise constant. 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 −0.01 −0.02 0 100 200 300 400 500 600 61

  22. Example 6: Restored signal by multilevel method with 3 levels. 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 −0.01 0 100 200 300 400 500 600 62

  23. P i L i � ˜ x − ˆ x � / � ˆ x � � ˜ x − ˆ x � / � ˆ x � ℓ # iter # iter 1 . 02 · 10 − 1 1 1 8 . 70 · 10 − 2 8 . 78 · 10 − 2 2 1 1 1 1 8 . 08 · 10 − 2 8 . 88 · 10 − 2 3 4 1 1 4 1 1 63

  24. Application to image restoration 64

  25. Example 7. Blur- and noise-free 512 × 512-pixel image. 65

  26. Restoration of image with 5% noise, Gaussian blur, determined by 2 RRGMRES iterations. 255 Quantitative measure: PSNR= 20 log 10 u || = 27 . 98 || u ℓ − ˆ dB. 66

  27. RRGMRES CGNR ℓ ν PSNR # iter PSNR # iter 1 · 10 − 2 1 29.77 3 32.36 9 1 · 10 − 2 2 31.14 3 2 34.09 5 7 5 · 10 − 2 1 27.98 2 28.74 3 5 · 10 − 2 2 28.80 2 1 29.90 2 2 67

  28. Example 8. Original lizard image and image contaminated by 10% noise and motion blur. 68

  29. Lizard restorations: CGNR CGNR-based 3-level method PSNR=25 . 11 PSNR=26 . 11 69

  30. Example 9: Original 256 × 256 image. 70

  31. Image contaminated by Gaussian blur and 1% noise. 71

  32. Restoration by solving Euler-Lagrange equation, Perona-Mailk regularization operator, 500 time-steps, 1000 mvp, PSNR=28 . 84. 72

  33. Restoration by 3-level method, Perona-Malik-based prolongation operator, 4 mvp, PSNR=35 . 85. 73

  34. Carrying out too many iterations may give rise to instability and produce unexpected results ... 74

  35. such as ... 75

  36. or ... 76

  37. Application to image segmentation 77

  38. Algorithm 2 Enhanced Multilevel Algorithm Input: A , b , δ , ℓ ≥ 1 (number of levels); x := x ℓ ∈ W ℓ ; Output: approximate solution ˜ Determine A i and b i for 1 ≤ i ≤ ℓ ; x 0 := 0 ; φ 0 := initial contour; for i := 1 , 2 , . . . , ℓ do x i, 0 := P i x i − 1 ; φ i, 0 := S i φ i − 1 ; ∆ x i,m i := IM ( A i , b i − A i x i, 0 ) ; Correction step: x i := x i, 0 + ∆ x i,m i ; Segmentation step: φ i := GAC ( φ i, 0 , x i ) ; endfor 78

  39. Example 10. Segmentation of noise- and blur-free image. 79

  40. Available image with 10% noise and Gaussian blur restored by CGNR and then segmented. 80

  41. Available contaminated images restored and segmented by 3-level CGNR-based method. Segmentation on level 2. 81

  42. Segmentation on level 3. 82

  43. Wavelet-based multilevel methods 83

  44. Let φ and and ψ be scaling and wavelet functions, respectively. Define Ψ j,k := 2 j/ 2 Ψ(2 j · − k ) , φ j,k := 2 j/ 2 φ (2 j · − k ) , where j and k the scale and space parameters, respectively. Then � � � x ∈ L 2 (R) . x = ( x, φ 0 ,k ) φ 0 ,k + ( x, Ψ j,k )Ψ j,k , k ∈ Z j ≥ 0 k ∈ Z Let Ψ − 1 ,k := φ 0 ,k and define the subspaces W j = span { Ψ j,k } | k |≤ k ( j ) . Here k ( j ) finite since we consider a finite interval [ a, b ]. 84

  45. Define Subspace: i � U i := W l ⊂ L 2 ([ a, b ]) l = − 1 Orthogonal projector: Q i : L 2 ([ a, b ]) → U i . Restricted operator A i : U i → U i : i = − 1 , 0 , 1 , . . . . A i := Q i AQ i , 85

  46. Prolongation operator P i : U i − 1 → U i : i � � P i x := x j,k Ψ j,k ˜ j = − 1 | k |≤ k ( j ) with  j ≤ i − 1 , | k | ≤ k ( i ) , x j,k , for   x j,k = ˜ | k | ≤ k ( i ) . 0 , for j = i,   Then i ) = N ( A i ) ⊥ . i − 1 ) ) ⊂ R ( A ∗ R ( P i | R ( A ∗ 86

  47. Theorem: Apply multilevel method based on the CGNR or MR-II iterative methods. Then the computed approximate solution on level i lives in N ( A i ) ⊥ . Example 11. Consider the integral equation � π/ 2 κ ( s, t ) x ( s ) ds = sin 2 (3 t ) − 0 . 9 t 3 + t 2 , 0 ≤ t ≤ π/ 2 , 0 with κ ( s, t ) := exp( s cos( t )). 87

  48. Order n i of the matrices A i . Submatrix A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 n i 28 50 88 158 292 554 1071 2098 88

  49. Right-hand sides without noise and with 10% noise 89

  50. Exact and computed approximate solutions for 10% noise 90

  51. Exact and computed approximate solutions for 1% noise 91

  52. Exact and computed approximate solutions for 0 . 001% noise 92

  53. CGNR ML-CGNR � x 8 ,k 8 − ˆ x � � x k − ˆ x � noise k k i Accel. � ˆ x � � ˆ x � 1 · 10 − 1 5 . 78 · 10 − 1 5 . 66 · 10 − 1 2 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 17.6 1 · 10 − 2 5 . 35 · 10 − 1 5 . 28 · 10 − 1 3 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 23.5 1 · 10 − 3 3 . 41 · 10 − 1 3 . 24 · 10 − 1 5 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 35.2 1 · 10 − 4 3 . 32 · 10 − 1 3 . 14 · 10 − 1 5 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 35.2 1 · 10 − 5 3 . 49 · 10 − 2 3 . 46 · 10 − 2 8 8 , 0 , 0 , 0 , 0 , 0 , 0 , 0 52.6 93

  54. Alternating iterative methods 94

  55. Continuous image degradation model � x ∈ Ω f ( x ) = Ω h ( x, y )ˆ u ( y ) dy + η ( x ) , with h the point spread function and f the available blur- and noise- contaminated image. Determine the blur- and noise-free image ˆ u by solving min u,w J ( u, w ) , where 95

  56. ��� � 2 � Ω h ( x, y ) u ( y ) dy − f ( x ) J ( u, w ) := Ω + α ( L ( u − w )( x )) 2 + β |∇ w ( x ) | � dx, using an alternating iterative method. Here L is a differential operator, e.g., the Perona-Malik operator and α > 0, β > 0 are regularization parameters. 96

  57. Discrete setting: u ( i ) S h ( w ( i − 1) ) := argmin u ∈K ℓ {� Hu − f δ � 2 = + α � L ( i − 1) ( u − w ( i − 1) ) � 2 } , S tv ( u ( i ) ) := argmin w ∈K ℓ {� L ( i − 1) ( w − u ( i ) ) � 2 + β � w � tv } , w ( i ) = for i = 1 , 2 , 3 , . . . , where � · � tv is a discrete TV-norm, L ( i − 1) is a discretization of the operator L , and K ℓ a Krylov subspace. 97

  58. Available blur- and noise-contaminated image (Gaussian blur, 50% noise. 98

  59. Restored image. 99

  60. Available blur- and noise-contaminated image (Gaussian blur, 10% noise. 100

Recommend


More recommend