numerical approximations of evolution problems with
play

Numerical approximations of evolution problems with nonlocal - PowerPoint PPT Presentation

Numerical approximations of evolution problems with nonlocal diffusion Silvia Sastre Gmez Bosco Garca Archilla Jorge Galn Vioque 24 May, 2010 Silvia Sastre Gmez Bosco Garca Archilla Jorge Galn Vioque Numerical approximations of


  1. Numerical approximations of evolution problems with nonlocal diffusion Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque 24 May, 2010 Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  2. Introduction Nonlocal evolution problems � u t ( x , t ) = ( J ∗ u − u )( x , t ) = R N J ( x − y ) u ( y , t ) dy − u ( x , t ) where J : R N → R N is non-negative, radial, continuous function � R N J ( z ) dz = 1 . Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  3. Meaning of each term in the equation � u t ( x , t ) = R N J ( x − y ) u ( y , t ) dy − u ( x , t ) u ( x , t ) is the density at the point x at time t . Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  4. Meaning of each term in the equation � u t ( x , t ) = R N J ( x − y ) u ( y , t ) dy − u ( x , t ) u ( x , t ) is the density at the point x at time t . J ( x − y ) is the probability distribution of jumping from y to x . Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  5. Meaning of each term in the equation � u t ( x , t ) = R N J ( x − y ) u ( y , t ) dy − u ( x , t ) u ( x , t ) is the density at the point x at time t . J ( x − y ) is the probability distribution of jumping from y to x . � R N J ( x − y )( u ( y , t ) − u ( x , t )) dy takes into account the individuals arriving or leaving position x to other places. Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  6. The Dirichlet problem Consider de nonlocal problem: � u t ( x , t ) = R N J ( x − y ) u ( y , t ) dy − u ( x , t ) , x ∈ Ω , t > 0 , u ( x , t ) = 0 , x / ∈ Ω , t > 0 , u ( x , 0 ) = u 0 ( x ) , x ∈ Ω . In this problem diffusion takes place in the whole R N , with u = 0 outside Ω . Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  7. The Dirichlet problem Theorem (asymptotic behaviour) If u 0 is continuous, positive and bounded then there exists a positive constant C ∗ such that | u ( x , t ) − C ∗ e λ 1 t φ 1 ( x ) | = 0 . t →∞ max lim x where λ 1 is the first eigenvalue associated to the operator � Au ( x , t ) = R N J ( x − y ) u ( y , t ) dy − u ( x , t ) and φ 1 the eigenfunction associated to λ 1 [1] Emmanuel Chasseigne, Manuela Chaves, Julio Rossi, J. Math. Pures Appl. 86 (2006) 271-291. Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  8. Our aim Discretize the Dirichlet problem with different methods using MATLAB, and see which is the most efficient. Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  9. Our aim Discretize the Dirichlet problem with different methods using MATLAB, and see which is the most efficient. Evaluate how the discretizations reproduce the asymptotic behaviour of the solutions of the equation. Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  10. Discretization of the problem We restrict ourselves to the 1-dimensional case, so that Ω = [ a , b ] , a < b ∈ R . We consider a partition of [ a , b ] given by the N equally-spaced points. Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  11. Discretization of the problem To discretize the operator of our problem � Au = R J ( x − y ) u ( y , t ) dy − u ( x , t ) we have used the trapezoidal rule   N − 1  J ( x i − x 1 ) u 1 + J ( x i − x N ) u N � ( Au ) i = h + J ( x i − x j ) u j  − u i . 2 j = 2 Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  12. Discretization of the problem Operator written with matrices:     J 1 / 2 J 2 J 3 ... J N / 2 J 2 / 2 J 1 J 2 ... J N − 1 / 2         J 3 / 2 J 2 J 1 ... J N − 2 / 2 Au = A u = h − I N u .       . . . .   ... . . . .     . . . .     J N / 2 J N − 1 J N − 2 ... J 1 / 2 where { J 1 = J ( 0 ) , J 2 = J ( h ) , J 3 = J ( 2 h ) , ..., J N = J ( Nh ) } . u = ( u 1 , u 2 , u 3 , . . . , u N − 1 , u N ) T and u j = u j ( t ) ≈ u ( x j , t ) . Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  13. MATLAB commands Convolution, with the MATLAB command conv . FFT techniques , with the MATLAB commands fft and ifft . Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  14. MATLAB commands / Convolution Convolution or polynomial multiplication If u = ( u 1 , . . . , u n ) T and v = ( v 1 , . . . , v m ) T are vectors whose components are polynomial coefficients, its convolution is the vector whose components are the coefficients of the polynomial given by its product. This resulting vector is of length n + m − 1. Looking at it by coordinates, if w = conv(u,v) , then � w k = u j v k − j + 1 , k = 1 , 2 , . . . , n + m − 1 . j p ( x ) = u 1 + u 2 x + . . . + u n x n Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  15. MATLAB commands / Convolution Convolution or polynomial multiplication If u = ( u 1 , . . . , u n ) T and v = ( v 1 , . . . , v m ) T are vectors whose components are polynomial coefficients, its convolution is the vector whose components are the coefficients of the polynomial given by its product. This resulting vector is of length n + m − 1. Looking at it by coordinates, if w = conv(u,v) , then � w k = u j v k − j + 1 , k = 1 , 2 , . . . , n + m − 1 . j p ( x ) = u 1 + u 2 x + . . . + u n x n q ( x ) = v 1 + v 2 x + . . . + v m x m Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  16. MATLAB commands / Convolution Convolution or polynomial multiplication If u = ( u 1 , . . . , u n ) T and v = ( v 1 , . . . , v m ) T are vectors whose components are polynomial coefficients, its convolution is the vector whose components are the coefficients of the polynomial given by its product. This resulting vector is of length n + m − 1. Looking at it by coordinates, if w = conv(u,v) , then � w k = u j v k − j + 1 , k = 1 , 2 , . . . , n + m − 1 . j p ( x ) = u 1 + u 2 x + . . . + u n x n q ( x ) = v 1 + v 2 x + . . . + v m x m p ( x ) q ( x ) = w 1 + w 2 x + . . . + w n + m − 1 x n + m − 1 Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  17. MATLAB commands / FFT Discrete Fourier Transform (DFT) Linear transformation in C N that associates with each vector f the vector c as follows, F N c = f 1 1 1 · 1    c 0   f 0  ω 2 ω n − 1 1 ω · c 1 f 1        ω 2 ω 4 ω 2 ( n − 1 )      1 · c 2 = f 2             · · · · · · ·       ω ( N − 1 ) 2 ω N − 1 ω 2 ( N − 1 ) c N − 1 f N − 1 1 · 2 π i N is the N − th root of unity. where ω = e Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  18. MATLAB commands / FFT Discrete Fourier Transform (DFT) Linear transformation in C N that associates with each vector f the vector c as follows, F N c = f 1 1 1 · 1    c 0   f 0  ω 2 ω n − 1 1 ω · c 1 f 1        ω 2 ω 4 ω 2 ( n − 1 )      1 · c 2 = f 2             · · · · · · ·       ω ( N − 1 ) 2 ω N − 1 ω 2 ( N − 1 ) c N − 1 f N − 1 1 · 2 π i N is the N − th root of unity. where ω = e N ¯ The Discrete Fourier Transform of a vector f is c = 1 F N f . Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  19. MATLAB commands / FFT Fast Fourier Transform (FFT) F N f requires N 2 multiplications. N ¯ The DFT, to find c = 1 N ¯ Whereas, the FFT (Cooley and Tukey algorithm) finds c = 1 F N f with O ( N log ( N )) multiplications. Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

  20. Methods implemented 1 Convolution with help of a matrix-vector product. 2 Computing the convolution by means of MATLAB’s command conv . 3 Computing the convolution by means of Fast Fourier Transform (FFT) techniques. Silvia Sastre Gómez Bosco García Archilla Jorge Galán Vioque Numerical approximations of evolution problems with nonlocal diffusion

Recommend


More recommend