Highly Linear and Compact MMW Phased Array Transmitters November 11, 2003 R. Lai, M. Siddiqui, B. Pitman, M. Nishimoto, K. Johnson, S. Din, O. Fordham, G. Schreyer, R. Grundbacher, L. Callejo and D. Streit, Northrop Grumman Space Technology, Redondo Beach, CA 90278
Critical Technology that will Enable Next Phased Array Generation Satcom Phased Arrays • Next generation phased array designs will be driven by desire for increased capacity • Evolution to smaller beam widths and more simultaneous beams favors phased arrays � ~100 simultaneous beams from one aperture � Today’s typical communication links use complex modulation requiring greater than 26 to 30 dB C/N for BER of 10 -6 to 10 -9 0.7 deg beams • Critical phased array technologies will be: SATSOFT • High efficiency and linearity SSPA’s 0.120 � Maintain high C/I with many beams V 0.100 � P 1dB is not a good measure of linearity for multi-carrier 0.080 modulation � Two tone OIM 3 /OIP 3 is an approximation for multi- -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 U carrier schemes 0.4 deg beams SATSOFT � Noise to Power Ratio (NPR) for intra channel signal distortion 0.120 � Adjacent Channel Power Ratio (ACPR) for adjacent V 0.100 channel interference 0.080 • Compact multiple-beam beam formers -0.060 -0.040 -0.020 0.000 0.020 0.040 0.060 U � Earth coverage, ~1000 beams � Need to reduce die size and cost 1
Ba Backgr ckground ound Noise Power Ratio Explained Adjacent Channel Power Ratio Explained 2
Outline Outline Selected linearity tests were performed at different frequencies � dependent on test equipment availability. A sampling of measurements at frequencies from 20 GHz to 46 � GHz are presented. All 1 watt amplifiers have similar topologies: � � Show similar P 1dB , P sat and OIP 3 behavior. � ACPR and NPR behavior should be similar. � Behavior over temperature is similar. 3
NGST 0.15µm GaAs PHEMT NGST 0.15µm GaAs PHEMT Flight qualified profile (die thickness: 100 µm; 50 µm.) � F T ~ 75 to 80 GHz @ V DS = 5V � I max > 600 mA/mm � V BD > 9 V @ 0.1 mA/mm, > 11V @ 1 mA/mm � G m > 550 to 600 mS/mm � OIP 3 > P 1dB + 9dB or better @ 10dB OBO � � OIP 3 > P 1dB + 9dB holds at 5dB OBO P 1dB ~ 400 to 500 mW/mm; P sat ~ 500 to 650 mW/mm � 4
20 GHz Driver Amplifier 20 GHz Driver Ampl ifier � Freq: 20 GHz � Gain: 20 dB � P 1dB : 25 dBm (329 mW/mm, 30% PAE) � P sat : 26 dBm (414 mW/mm, > 42% PAE) APH505 NPR vs Pout 40 245 NPR_ng10 (L) � OIP 3 : 35 dBm (IM 3 = -46dB c @10dB OBO) 35 230 PAEn_ng10 (L) NPR (dB) and PAE (%) Idn_ng10 (R) 30 215 22.48 � AM/PM < 5 degrees under drive 20.22 25 200 Id (mA) 20 185 � NPR calculated > 18dB c @ 4.5 OBO 15 170 22.48 10 155 • Using single tone AM/PM, 18 5 140 P in /P out and current vs. drive 15 16 17 18 19 20 21 22 23 24 25 26 27 Noise Pout (dBm) characteristics. APH505(2-1-1) AM-PM at Fc=20.7GHz � PAE at NPR > 18dB c ~ 21% -90 -95 -100 -105 -110 � Size: 2.5 mm 2 -115 Phase S21 (°) -120 -125 Vd=3.5 -130 -135 Vd=4 -140 Vd=4.5 -145 State-of-the-art NPR for -150 Vd=5 -155 Vd=5.5 -160 multi beam operation 5 6 7 8 9 10 11 12 13 14 15 Pin (dBm) 5
24-26 GHz Power Amplifier 24-26 GHz Power Amplifier � Freq: 24 to 26 GHz � Gain: 18 dB � P 1dB : 31 dBm (525 mW/mm, 22% PAE) Fixtured PIPO Data @ 25 GHz � P sat : 32 dBm (660 mW/mm, 29% PAE) 35 35 30 30 � OIP 3 : 40.5 dBm (IM 3 = -45dB c @ 10dB 25 25 Pout / Gain Pout(dBm) 20 20 OBO) Gain(dB) 15 15 PAE(%) 10 10 5.88 mm 2 � Size: 5 5 0 0 0 2 4 6 8 10 12 14 16 � Amplifier topology chosen for maximum Pin (dBm) linear performance. PAE was a secondary consideration. Fixtured OIP3 vs. Pout per Tone 42 41 40 39 OIP3 (dBm) 24 GHz 38 37 25 GHz 36 26 GHz 35 At P out = (P 1dB - 2 dB), 34 33 32 IM 3 = -25 dB c ! 18 20 22 24 26 28 Pout / Tone (dBm) 6
ACPR Test Bench ACPR Test Bench � Freq: 26 GHz � WCDMA (25MHz BW) up converted to pass band. � ACPR > –44dBc @ 5 MHz offset � Raw test data (no corrections for test set) � Performance is expected to repeat for power amplifiers up to 45 GHz processed in NGST’s 0.15um 4mil GaAs . Excellent linearity (ACPR) @ P out =P 1dB – 9dB 7
37-40 GH 37-40 GHz Power Amplifier z Power Amplifier � Freq: 37 to 40 GHz � Gain: 15 dB � P 1dB : 30 dBm (463 mW/mm, 18% PAE) Fixtured PIPO Data @ 38 GHz � P sat : 31 dBm (583 mW/mm, 20% PAE) 35 25.00% � OIP 3 : 41 dBm (IM 3 = -40dB c @ 6dB OBO) 30 20.00% 25 Pout / Gain Pout(dBm) 15.00% � OIP 3 degrades 2 dB at 85 degrees C. 20 Gain(dB) 15 10.00% PAE(%) 10 � OIP 3 very well behaved over 5.00% 5 temperature. 0 0.00% 0 3 6 9 12 15 18 21 24 Pin (dBm) � Size: 4.5 mm 2 � Temperature performance typical of all Fixtured IP3 vs. Temperature @ 21 dBm / tone NGST linear power amplifiers. 42 41 40 39 IP3 (dBm) 38 25 C 37 85 C 36 35 IM 3 = -36 dB c @ 85 degrees C with 34 33 32 6dB OBO ! 37 37.5 38 38.5 39 39.5 40 Frequency (GHz) 8
40- 40-44 GHz Power Amplifier 44 GHz Power Amplifier � Freq: 40 to 44 GHz � Gain: 12 dB � P 1dB : 29 dBm (368 mW/mm, 14% PAE) � P sat : 30 dBm (463 mW/mm, 18% PAE) Fixtured PIPO Data @ 42 GHz � OIP 3 : 39 dBm (IM 3 = -42dB c @ 8dB OBO) 35 20 18 30 16 4.25 mm 2 � Size: 25 14 Pout / Gain PAE (%) Pout(dBm) 12 20 10 Gain(dB) 15 8 PAE(%) 6 10 4 5 2 0 0 0 2 4 6 8 10 12 14 16 18 20 22 Pin (dBm) Fixtured Power vs. Frequency 42.00 40.00 38.00 36.00 Pout (dBm) P1dB (dBm) OIP 3 = P 1dB + 10dB with gain 34.00 32.00 P3dB (dBm) 30.00 OIP3 (dBm) of only 6dB per stage! 28.00 26.00 24.00 22.00 40 41 42 43 44 Frequency (GHz) 9
43-47 GHz Phased Array Transmit Amplifier 43-47 GHz Phased Array Transmit Amplifier � Freq: 43 to 47 GHz � Gain: 22 dB � Biased for power: � P 1dB = 24 dBm (465 mW/mm), PAE>22% � P sat = 24.7 dBm (546 mW/mm), PAE > 24% APH565 Fixtured Test Results @45 GHz (R5C3M0, 1430-156) Biased for efficiency: 30.0 30 Pout(dBm), Gain(dB) 25.0 25 Pout(dBm) 20.0 20 � P 1dB = 23 dBm (370 mW/mm), PAE > 30% Gain(dB) PAE% 15.0 15 PAE(%) 10.0 10 � P sat = 23.8 dBm (450 mW/mm), PAE > 35% 5.0 5 0.0 0 -14 -12 -10 -8 -6 -4 -2 0 2 4 5 7 9 3.17 mm 2 � Size: Pin dBm Biased for APH565_A_530 Measured Data @ 45 GHz Power 25 40 35 20 Pout (dBm), Gain (dB) 30 25 15 PAE (%) 20 10 State-of-the-art P 1dB and PAE from 15 Pout(dBm) 10 Gain(dB) 5 PAE(%) 0.15um, 4mil GaAs process 5 Biased for 0 0 -20 -15 -10 -5 0 5 10 15 PAE Pin (dBm) 10
Figur Figure of Merit Compariso of Merit Comparison Table Table Foundry Year Freq. Stages Chip Size Output S.S. Gain P1dB PAE Psat Psat density OIP3 OIP3:P1dB P1dB density OIP3 density mm 2 (GHz) mm dB dBm % dBm mW/mm dBm mW/mm W/mm NGST 2003 19-21 2 2.5 0.8 18.5 24.0 30.0 25.9 35 486 11 314 3.98 2002 14-17 4 4.1 3.6 30 30.8 24.5 31.3 375 333 Transcom 2000 18-26 2 3.9 2.4 15 31.0 25.0 32 660 38.5 7.5 525 2.95 Triquint NGST 2003 24-27 2 5.9 2.4 19.5 30.9 24.0 31.6 40.5 602 9.6 513 4.70 NGST 2002 21-26 2 5.9 2.4 19.5 30.9 24.0 31 40.5 525 9.6 513 4.70 NGST 2003 30 1 1.9 2.4 10 31.0 25.7 32 40.5 660 10 525 3.30 2002 29 2 2.3 2.4 18.5 29.5 30.1 426.4 375 UMS 2002 30 4 12.9 22.5 34.5 219 Triquint 2000 28-31 2 3.7 2.4 16 29.5 20.0 30.2 436.3 37 7.5 525 2.08 Triquint 1999 29-33 2 14.9 10.8 18 34.8 20.0 36.5 413.6 280 BAE NGST 2003 37-40 2 4.5 2.16 15 30.0 18.0 31 41 583 11 463 5.73 NGST 2003 40-44 2 4.3 2.16 15 29.0 12.0 30.5 39 519 10 368 3.64 NGST 2003 43-47 3 3.2 0.54 22 24.0 35.0 24.8 559 465 11
CONCLUSIONS CONCLUSIONS Demonstrated state of the art P 1dB , P sat , Power Density and � OIP 3 in compact die size. Meets high linearity requirements of phased array / radar � transmitters. � High gain per stage enables excellent linearity, PAE and compact die size through 46 GHz. � Designs use NGST’s flight qualified 0.15µm GaAs PHEMT technology. � NGST space qualified 0.15um PHEMT with its proven track record of volume production and use in automated assembly will support high chip counts in large arrays. Next phase in design will reduce area by 50% while maintaining � performance. 12
Recommend
More recommend