Thermodynamic consistency in modeling of SLE and VLE in aqueous alkanolamine solutions Ardi Hartono and Hallvard F Svendsen PCCC2 Conference Bergen, September 17-20, 2013 Norwegian University of Science and Technology (NTNU) 1
Outline Introduction Theory VLE (Vapor-Liquid Equilibrium) SLE (Solid-Liquid Equilibrium) Modeling : NRTL Framework as an example Results MEA+H 2 O DEEA+H 2 O AMP+H 2 O Conclusions 2
Introduction Rigorous thermodynamic models based on excess Gibbs energy (eNRTL and eUNIQUAC) are capable of representing both Solid-Liquid-Equilibria (SLE) and Vapor-Liquid-Equilibria (VLE) in aqueous alkanolamine solutions A robust and accurate modeling relies on the quality and type of data used to regress the parameters to get the best representation of the data. Different apparatuses provide different equilibrium data: Ebulliometer experiments usually generate PTxy data which can be used to determine the activity coefficient for both amine and water. A calorimetric measurement can provide excess enthalpy of mixing and reaction as well heat capacity Freezing point depression measurements provide SLE and water activity data . When comparing activity coefficients of water from VLE and SLE data often inconsistencies are seen: e.g. the excess enthalpies calculated were slightly skewed toward higher amine concentrations when a best fit to freezing point depressions was achieved . the minimum value of the excess enthalpy was fitted optimally but the freezing point depression was found to be under-predicted, in particular at higher concentrations. 3
Examples: MEA +H 2 O Posey, 1996 VLE (P-T-x and P-T-x-y), Excess Enthalpy and Freezing Point. 1.1 2 0 0 10 γ MEA 25 ° C (Touhara, et al., 1982) Fosbøl, et al., 2011 1 Cheng, et al., 1992 γ H2O -5 0.9 -0.5 0.8 -10 1 10 0.7 H E (kJ/mol) -1 P (kPa) Θ 1 ( ° C) γ i (-) 0.6 -15 0.5 -1.5 -20 0.4 0 10 0.3 -2 -25 0.2 0.1 -2.5 -30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 x 1 (-) x 1 ,y 1 (-) x 1 (-) x 1 (-) Fits Overpredict Schmidt, et al., 2007 VLE (P-T-x and P-T-x-y) and Excess Enthalpy. 1.1 2 0 0 10 γ MEA Fosbøl, et al., 2011 25 ° C (Touhara, et al., 1982) 1 Cheng, et al., 1992 γ H2O -5 0.9 -0.5 0.8 -10 1 10 0.7 H E (kJ/mol) -1 P (kPa) Θ 1 ( ° C) γ i (-) 0.6 -15 0.5 -1.5 -20 0.4 0 10 0.3 -2 -25 0.2 0.1 -2.5 -30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 x 1 (-) x 1 ,y 1 (-) x 1 (-) x 1 (-) 4 Skewed Overpredict Underpredict
Examples: Hessen, et al., 2010 VLE (P-T-x and P-T-x-y), Excess Enthalpy and Freezing Point. 2 1.1 0 0 10 γ MEA 25 ° C (Touhara, et al., 1982) Fosbøl, et al., 2011 1 Cheng, et al., 1992 γ H2O -5 0.9 -0.5 0.8 -10 1 10 0.7 H E (kJ/mol) -1 P (kPa) Θ 1 ( ° C) γ i (-) 0.6 -15 0.5 -1.5 -20 0.4 0 10 0.3 -2 -25 0.2 0.1 -2.5 -30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 x 1 (-) x 1 ,y 1 (-) x 1 (-) x 1 (-) Fits Overpredict Overpredict Underpredict Zhang, et al., 2011 VLE (P-T-x and P-T-x-y), Excess Enthalpy and Heat Capacity. 1.1 2 10 0 0 γ MEA 25 ° C (Touhara, et al., 1982) Fosbøl, et al., 2011 1 γ H2O Cheng, et al., 1992 -5 0.9 -0.5 0.8 1 -10 10 0.7 H E (kJ/mol) -1 P (kPa) γ i (-) Θ 1 ( ° C) 0.6 -15 0.5 -1.5 -20 0.4 0 10 0.3 -2 -25 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -2.5 -30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 x 1 (-) x 1 ,y 1 (-) x 1 (-) x 1 (-) AIM: To find the origin of the discrepancy between measured data used for the thermodynamic modeling of the activity 5 coefficient of water.
Theory VLE SLE D = D - D = = m m m ( , ) T p m ( , ) T p G H T S ( , ) T p ( , ) T p s v = + = + T m m m ( , ) T p m ( , ) T p RT ln f ( , ) T p ( , ) T p RT ln f ò D = D + D i i H H C dT f P = + = + s v m m m ( , ) T p m ( , ) T p RT ln f ( , ) T p ( , ) T p RT ln f Tf s i v i s v T = D v f f f C ò D = × × = - D = D + i i i P G R T ln RT ln a S S dT i s f f × × = × × F T g x P P y i Tf i i i i i D = - s C C C - = D g P P P RT ln x G ì ü ï ï - f ï V ( P P ) ï i i F º × - » i í i ì ý exp 1 ï ï f ° i ï RT ï î þ i D D T T D H S 1 1 C ò ò - = - + D - f f g P ln x C dT dT é ù ¶ E i i P ( nG RT ) RT R RT R T ê ú = ê g ln T T ú f f i ¶ n ë û i T P ni , , D = D H T S f f ` f é ù ¶ E E H ( G RT ) ê ú - = ê ú D T T ¶ D 2 H RT T 1 1 C ë û ( ) ò ò - = - + D - f P g P x , ln x T 1 C dT dT i i R P RT RT R T f T T é ù f f ¶ E H ê ú = ê E C ú P ¶ T ë û P x , 6 Prausnitz, et al., 1999, Molecular Thermodynamics of Fluid-Phase Equilibria Hojjati and Rohani, 2006, Measurement and prediction solubility of Paracetamol in Water-Isopopanol solution
D T T D H 1 1 C ( ) ò ò - = - + D - f P g ln x T 1 C dT dT i i R P RT RT R T f T T f f Case 1 D T T T D H 1 1 C = f ò ò ( ) D º = f - T P g C dT dT ln x 1 T R T P i i R RT R T RT f T T f f Posey (1996), Cheng et al. (1993) and Hessen, et al. (2010) Case 2 D H - = f D @D S ln g ln x T C i i R P f RT f Case 3 D D H C D @ ( ) ( ) - = f - + + - C k P g ln x T 1 1 ln T T P Tf i i R R R RT RT f 7
D T T D H 1 1 C ( ) ò ò - = f - + D - P g ln x T 1 C dT dT i i R P RT RT R T f T T f f Case 4 D æ ö H bT a ( ) ( ) ÷ ç D = + - = f - + + - + f - - 1 ln x g T 1 1 ln T T 2 T ÷ C a bT ç ÷ è ø T P i i R R R R RT R 2 R R f Ge and Wang (2009) and Hartono, et al. (2013) Case 5 c D = + + C a bT P - ( T T Q ) ì ü ï ( ) ï D - - H bT T 1 a ï T T ï ( ) 2 ( ) ( ) - = f - + + - + f - + Q - í ý ln x g T 1 1 ln T T T T c ln ln T ï ï i i R R R f - R RT R 2 RT T T T ï ï î þ Q f f Fosbøl, et al. (2009 and 2011) 8
Thermo physical property of water as solvent 100 ∆ Cp=Cp l -Cp s 90 Cp l Heat Capacity, Cp (J ⋅ mol -1 ⋅ K -1 ) 80 70 J D = H 6009.4 ∆ Cp= a + b.*T 60 f mol ∆ Cp 50 J D = C 37.97 P × K mol 40 J 30 Cp s D = - × C 75.929 0.1405 T K mol P × 20 T f =273.15K - × 4 2.45634 10 J D = - × - 10 C 75.929 0.1405 T ( ) P - × T 200 K mol 0 0 50 100 150 200 250 300 350 400 450 500 550 T (K) 9 DIPPR-Design Institute for Physical Properties (2004)
Modeling æ ö æ ö æ ö æ ö 2 2 2 2 - - - Q - Q n Exp calc n Exp calc n E Exp E calc n F Exp F calc g g ÷ P P ÷ ( H ) ( H ) ÷ ( ) ( ) ÷ ç ç ç ç å å å å ÷ ÷ ÷ ÷ = + + + ç ç ç ç i i Sol Sol Sol Sol Sol Sol OF ÷ ÷ ÷ ÷ ç ç ç ç ç ÷ ç ÷ ç ÷ ç ÷ Q è Exp ø è Exp ø è E Exp ø è F Exp ø g P ( H ) ( ) = = = = i 1 i i 1 Sol i 1 Sol i 1 Sol  -  n 1 å model exp = AARD  n = 1 i exp Melting/ Freezing Point ( ° C) Species Water 0 MEA 10.3 AMP 67 DEEA -70 10 Hertzberg, T and Mejdell, T., 1998, MODFIT for Matlab: Parameter Estimation in a General Nonlinear Multiresponse Model.
Recommend
More recommend