noncommutative extensions of the space time symmetries
play

Noncommutative extensions of the space-time symmetries beyond - PowerPoint PPT Presentation

Noncommutative extensions of the space-time symmetries beyond supersymmetry L. A. Wills-Toro Department of Mathematics and Statistics, American University of Sharjah Abstract: Novel bosonic and fermionic graded extensions of the Poincar


  1. Noncommutative extensions of the space-time symmetries beyond supersymmetry L. A. Wills-Toro Department of Mathematics and Statistics, American University of Sharjah Abstract: Novel bosonic and fermionic graded extensions of the Poincaré algebra beyond supersymmetry are presented. Their nilpotent features and their combination with nonabelian symmetry give the possibility of going beyond Coleman & Mandula no-go theorems.

  2. Symmetry Generators y y’ J x � y � N = J x − a N = J x y N − a J 1 0 N = J x y N − a ∂ x J x y N = exp 8 − a ∂ x < J x y N y realization of 8 P x < = ℜ D H P x L = − i — 8 ∂ x < i H − a L J x � y � N = exp 9 ℜ D H P x L = J x y N x’ x y � N = J Cos H θ L − Sin H θ L — J Cos H θ L N J x y N = exp 9 θ J 0 − 1 0 N= J x y N x � Sin H θ L a realization of 8 M xy or J z < = ℜ D H M xy L = 1 y’ = ℜ D H M xy L = − i — 8 x ∂ y − y ∂ x < y θ i θ x � x = exp ℜ D M xy x x’ y � y —

  3. y’ y v z z’ x’ x i y − v ê c i ct − vx ê c y j z j z j z j z j z "################## "################## j z " ################## j z j z 1 i y i y 1 − v2 ê c2 j 1 − v2 ê c2 1 − v2 ê c2 z j z j z j z j z j z j z j z j z j ct � z j z j z j z j z j z − v ê c 0 0 j z j z ct j z j z j z j z j z j z j z j z x � j z j z "################## "################## " ################## j z x − vt j z j z j z j z 1 0 0 x j z j z 1 − v2 ê c2 1 − v2 ê c2 1 − v2 ê c2 j z = = = j z j z j z y � k { k { j z j z j z y j z j z z � k { k { z y 0 0 1 0 z 0 0 0 1 i i y y i y i y j j z z j z j z j j z z j z j z i H v ê c L j j z z j z j z − 1 = exp i ℜ M H M 01 Ly j j z z 0 0 0 j z j z j z ct ct j H v ê c L j z z j z j z j z j j z z j z j z j j z z j z j z − 1 k { j j z z j z j z 0 0 0 x x j j z z exp k { k { k k { { y y 0 0 0 0 — z z 0 0 0 0

  4. Composition of Symmetry Transformations y’ Px � y’ y y − a x’ x x ⏐ x’ ⏐ − b P y ↑ ⏐ ⏐ b P y ↓ Px y’ y’ � y y a x x 8 1 + b ∂ y <8 1 + a ∂ x <8 1 − b ∂ y <8 1 − a ∂ x < +ϑ a 2 b 2 L H = 1 + ab ∂ y ∂ x −∂ x ∂ y L +ϑ H a 2 b 2 L = H x’ x’ i H − a L H − b L i y j z j z@ ℜ D H P x L , ℜ D H P y LD + ϑ H a 2 b 2 L = 1 − i k { 1 − — — @ ℜ D H P x L , ℜ D H P y LD = 0 @ P x , P y D = 0 @ P x , P z D = 0 @ P y , P z D = 0

  5. Underlying and Extending Grading (0,0) (1,0) (0,1) (1,1) It is an additive grading (additive quantum = i — P y M xy , P x number), since the degree of a product [0]3 +[0]1 =[0]2 is given by the addition of degrees (0,0) (1,0) (0,1) (1,1)

  6. Poincaré Algebra Z 2 XZ 2 Extension ⊇ I Z 2 XZ 2 I = Z 2 X (Z 4 n X Z 4 n)

  7. Clover Extensions: a) Vector Scalar Clover Extension ⎡ ⎤ 2 ⎡ ⎤ = + = + 2 , T R s s ( 1) , R T , R t t ( 1) , R ( , ) s t ⎣ ⎦ ⎢ ⎥ ⎣ ⎦

  8. b) Minimal Vector Clover Extension

  9. c) Full Clover Extension

  10. d) VSC Extension with su(2) enhancement?

  11. e)

  12. f) The su(3) Full Clover Ext.

  13. g)

  14. g) su(3) Trefoil Extension

  15. Summary: Supersymmetry provides a Z 2 -graded extension, in which two spinor charges combine to produce a space-time translation: y 2C 2C t z x The Clover extensions are Z 4 XZ 4 -graded extensions, in which three vector charges combine to produce a translation: Z 2 X(Z 4 XZ 4 )- graded extensions: Susy, Internal Symmetries, Dark Energy, Dim. confinement u(1)xu(1), su(2), su(3)?

Recommend


More recommend