new transportable atom sensors and their applications to
play

New transportable atom sensors and their applications to space - PowerPoint PPT Presentation

New transportable atom sensors and their applications to space experiments P . Bouyer Source Atomiques Cohrentes et Interfromtrie Atomique Groupe dOptique Atomique Laboratoire Charles Fabry de lInstitut dOptique Campus


  1. New transportable atom sensors and their applications to space experiments P . Bouyer Source Atomiques Cohérentes et Interférométrie Atomique Groupe d’Optique Atomique Laboratoire Charles Fabry de l’Institut d’Optique Campus Polytechnique, France

  2. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  3. Atom accelerometer  Based on Raman pulses atom optics  π /2 − π − π /2 (Kasevich & Chu 1991) : interferometer  π /2 : create a superposition of 2 different velocities : beam splitter  π : exchanges velocities : mirror  We use an (optical) ruler to precisely measure the (atomic) test mass position  Similar to falling corner cube gravimeter (FG5)  FG 5 : Laser phase is read by optical interferometry  Atom sensor : Laser phase is read by atom interferometry.  An Atom Interferometer “reads” the position of an atom proof mass using some kind of “laser telemetry”  Velocity measurement improves with time  Acceleration measurement improves with time  Absolute accuracy  Example : watt balance for kg definition  Performances Similar to best sensors  Extension to low frequency September 06 Transportable Atom Sensors ... - P. BOUYER 3

  4. Atom accelerometer  Based on Raman pulses atom optics  π /2 − π − π /2 (Kasevich & Chu 1991) : interferometer  π /2 : create a superposition of 2 different velocities : beam splitter  π : exchanges velocities : mirror  We use an (optical) ruler to precisely measure the (atomic) test mass position  Similar to falling corner cube gravimeter (FG5)  FG 5 : Laser phase is read by optical interferometry  Atom sensor : Laser phase is read by atom interferometry.  An Atom Interferometer “reads” the position of an atom proof mass using some kind of “laser telemetry”  Velocity measurement improves with time  Acceleration measurement improves with time  Absolute accuracy  Example : watt balance for kg definition  Performances Similar to best sensors  Extension to low frequency September 06 Transportable Atom Sensors ... - P. BOUYER 3

  5. Atom Gyrometer  3 Raman pulses separated in time  Atoms with an initizal velcity perpendicular to lasers  sensitivity to rotation = coriolis acceleration September 06 Transportable Atom Sensors ... - P. BOUYER 4

  6. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  7. Cold Atom Inertial Base (SYRTE) O ne pair of R am an 30 cm lasers sw itched on 3 tim es 50 cm D etections M axim um interaction tim e : 80 m s 3 rotation axes, 2 acceleration axes C ycling frequency 2H z S ensitivity (10 6 at): M agneto-O ptical Traps • gyroscope : 3,5 10 -7 rad.s -1 .H z -1/2 Launching velocity: 2.4 m .s -1 • accelerom eter : 8 10 -7 m .s -2 .H z -1/2 H orizontal velocity: 0.33 m .s -1 September 06 Transportable Atom Sensors ... - P. BOUYER 6

  8. Ultimate limits for atom accelerometers ? Nyman et al., cond-mat/0605057 and App. Phys. B 84(4) 673 Metrology  Accelerometer precision of a few 10 -10 m/s 2 per shot (5 s interrogation time)  Limit due to Raman-laser phase noise  Noise comes from quartz oscillator It is possible to go to a few seconds of interrogation time  Well suited for space applications  Best atom source ? September 06 Transportable Atom Sensors ... - P. BOUYER 7

  9. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  10. Why Coherent Source Le Coq et al., App. Phys. B 84(4) 1000 Température maximale ( µ K) 100  Ultra cold 10  Longer interrogation  Better signal to noise Sub Doppler 1  but lower flux ! 0.1 BEC  Atom Laser : space applications 0.01  Small source 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 0.01 0.1 1 10 Temps d'interrogation (s)  «New» Physics  Correlation, condensed matter September 06 Transportable Atom Sensors ... - P. BOUYER 9

  11. Gravitational “resonator” for BEC 2 resonance condition B ragg (or R am an) resonance O scillation resonance See C. Bordé’s Talk Impens, Bouyer, Bordé , App. Phys. B 84(4) September 06 Transportable Atom Sensors ... - P. BOUYER 10

  12. BEC : New generation of Interferometers September 06 Transportable Atom Sensors ... - P. BOUYER 11

  13. BEC : New generation of Interferometers  Heisenberg limited with number states  Compensates low atom number S/ N=10 6  Integrated interferometers  BEC on chips  «active» interferometers  Matter wave amplification» September 06 Transportable Atom Sensors ... - P. BOUYER 11

  14. A Guided Atom Laser W. Guerin et al., cond-mat/0607438  So far, RF outcoupled lasers from a magnetic trap  Once atom lasers are extracted, they are subjected to gravity  λ becomes quickly very small September 06 Transportable Atom Sensors ... - P. BOUYER 12

  15. A Guided Atom Laser W. Guerin et al., cond-mat/0607438 September 06 Transportable Atom Sensors ... - P. BOUYER 12

  16. A Guided Atom Laser W. Guerin et al., cond-mat/0607438  BEC in hybrid (magnetic+optical) trap  Focused Nd:YAG laser (red detuned: 1064 nm)  Anisotrop: 2,5 Hz × 360 Hz ( z R = 2.7 mm )  Waist position chosen with translational stage  It is possible to use RF outcouplig  RF extracted matter wave is guided in the optical trap  Large de Broglie wavelength (1 µm) September 06 Transportable Atom Sensors ... - P. BOUYER 12

  17. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  18. September 06 Transportable Atom Sensors ... - P. BOUYER 14

  19. ICE : Strategy  Use optical traps for “atom cavity”  Optical fields easilly switchable  No stray fields, only “diffusive effects”  Precision knowledge on position, velocity … Compact BEC source :  Crutial : e ffj cient loading scheme into the optical trap  Need powerfull laser September 06 Transportable Atom Sensors ... - P. BOUYER 15

  20. I. C. E. : structure Light Source Fibre optics (s) Doubled telecoms Atomic Physics Computing Control Chamber Man-machine Real-time interface Robust, flexible Measurement Camera, accelerometer September 06 Transportable Atom Sensors ... - P. BOUYER 16

  21. I. C. E. :Cube Box superstructure Suspend vacuum Damped (foam filled) chamber with ropes, Grooves for adding optics slings, chains anywhere in the volume Adjust tension Breadboard (low vibration) with turnbuckles 2 × 10 8 at. in <5s 87 Rb MOT, 10/02/200 6 September 06 Transportable Atom Sensors ... - P. BOUYER 17

  22. I. C. E. : Cubes (with atoms) Box superstructure Suspend vacuum Damped (foam filled) chamber with ropes, Grooves for adding optics slings, chains anywhere in the volume Adjust tension Breadboard (low vibration) with turnbuckles 2 × 10 8 at. in <5s 87 Rb MOT, 10/02/200 6 September 06 Transportable Atom Sensors ... - P. BOUYER 18

  23. Atom Interferomtry : basic principle Atom Inertial Base (gyro + accelerometer) Coherent Atom Sensors I.C.E. : Tranportable Sensor for 0g tests Some possible space applications

  24. Atoms sensors in space : missions General Relativity Mapping the Lense-Thirring effect around the earth. Equivalence Principle Testing deviations of the  gravitational law at short and long distances. Pioneer Anomaly Beyond Casimir Effect Mapping the gravitational potential  with absolute gravity gradiometers September 06 Transportable Atom Sensors ... - P. BOUYER 20

  25. Atoms sensors in space : missions General Relativity Mapping the Lense-Thirring effect around the earth. Equivalence Principle Testing deviations of the  gravitational law at short and long distances. Pioneer Anomaly Beyond Casimir Effect Mapping the gravitational potential  with absolute gravity gradiometers September 06 Transportable Atom Sensors ... - P. BOUYER 20

  26. Philippe BOUYER Robert NYMAN Gaël VAROQUAUX Jean-François CLEMENT Jean-Philippe BRANTUT F. Impens Arnaud LANDRAGIN Frank PEREIRA Christian BORDE Alexandre BRESSON Yannick BIDEL François DEYSAC P . Bouyer Pierre TOUBOUL Linda MONDIN Michel ROUZE Source Atomiques Cohérentes Jean MIGNOT et Interférométrie Atomique http://www. IFRAF.org/ http://www.atomoptic.fr/ http://www.ice-space.fr/ Groupe d’Optique Atomique Laboratoire Charles Fabry de l’Institut d’Optique Post-doctoral position available. See www.atomoptic.fr Campus Polytechnique, France

Recommend


More recommend