New Physics at the Energy Frontier Sadia Khalil University of Kansas \ On behalf of ATLAS and CMS Collaborations DPF2017, Fermilab, USA Jul 31, 2017 Photo by Marty Murphy
A brief History of Achievements SLAC Spectrometer (1969) 1960 Parton observation in DIS and quark model -1969 1970 Bubble Chamber (1952-1983) J/ 𝜔 discovery -1974 𝜐 discovery -1976 B-quark discovery -1977 1980 W and Z discovery - 1983 1990 Tevatron (1983-2010) Top quark discovery - 1995 𝜉 𝝊 discovery - 2000 2000 LHC (2010-present) 2010 Higgs boson discovery - 2012 2017 Sadia Khalil, DPF, Fermilab, USA, Jul-Aug, 2017 2
A brief History of Achievements SLAC Spectrometer (1969) 1960 • LHC and its injectors Parton observation in DIS and quark model -1969 1970 Bubble Chamber (1952-1983) J/ 𝜔 discovery -1974 𝜐 discovery -1976 B-quark discovery -1977 1980 W and Z discovery - 1983 1990 • Higgs discovery and its properties Tevatron (1983-2010) • Precision measurement of SM particles Top quark discovery - 1995 • Measurements of rare B and D decays 𝜉 𝝊 discovery - 2000 2000 • Precision measurement of CKM parameters • Discovery of exotic Pentaquark, Tetraquark, 0 → Ξ c + + K - LHC (2010-present) Ω c 2010 (See Steven Blusk plenary talk on Wed, 2/8) Higgs boson discovery - 2012 • Understanding of charm hadronization and nuclear effects in Pb-Pb/Pb-p collisions 2017 Sadia Khalil, DPF, Fermilab, USA, Jul-Aug, 2017 2
UNSOLVED Are there any new symmetries beyond • mysteries standard model that can also address mass hierarchy? Supersymmetry • THE COMPLETE FIRST SEASON many variants and kind (MSSM, NMSSM, R-parity • conserving, R-parity violating) of models Global symmetry such as compositeness, • extra dimension Are there any additional new particles such as vector- • like quarks, excited quarks, leptons, Higgs and gauge bosons? Dark matter • non-SUSY DM models, lepto-quarks, dark/hidden sectors • Baryogenesis, leptogenesis • Strong Charge Parity • … • Today I am going tp give highlights of some of ti ese ques tj ons at ti e Energy Fron tj er Sadia Khalil, DPF, Fermilab, USA, Jul-Aug, 2017 3
Outline Selected CMS SUSY Results* - SMS Interpretation ICHEP '16 - Moriond '17 ~ ~ ~ ∼ 0 pp → g g , g → qq χ SUS-16-014 SUS-16-033 0l(MHT) ~ ~ ~ 1 ∼ 0 SUS-16-015 SUS-16-036 0l(MT2) pp → g g , g → qq χ ~ ~ ~ ∼ 0 1 pp g g , g bb SUS-16-014 SUS-16-033 0l(MHT) → → χ ~ ~ ~ ∼ 1 0 pp → g g , g → bb χ SUS-16-015 SUS-16-036 0l(MT2) ~ ~ ~ ∼ 1 0 pp g g , g bb SUS-16-016 0l( α ) → → χ T ~ ~ ~ ∼ 1 0 pp → g g , g → tt χ SUS-16-014 SUS-16-033 0l(MHT) 1 ~ ~ ~ ∼ 0 pp → g g , g → tt χ SUS-16-015 SUS-16-036 0l(MT2) ~ ~ ~ ∼ 1 0 pp → g g , g → tt χ SUS-16-016 0l( α ) Gluino 1 T ~ ~ ~ ∼ 0 pp → g g , g → tt χ SUS-16-019 SUS-16-042 1l( ∆ φ ) 1 ~ ~ ~ ∼ 0 SUS-16-020 SUS-16-035 2l same-sign pp → g g , g → tt χ ~ ~ ~ ∼ 0 1 SUS-16-022 SUS-16-041 Multilepton pp → g g , g → tt χ ~ ~ ~ ∼ 1 0 SUS-16-030 0l pp → g g , g → tt χ ~ ~ ~ ∼ 1 0 SUS-16-037 1l(MJ) pp → g g , g → tt χ ~ ~ ~ ~ ∼ 0 1 pp → g g , g → t t → t c χ SUS-16-030 0l (M - M = 20 GeV) LSP ~ ~ ~ 1 ∼ Mother ± pp → g g , g → bt χ SUS-16-033 0l(MHT) (M - M = 5 GeV) ∼ LSP ~ ~ ~ ∼ ∼ 1 0 χ ± pp → g g , g → qq χ ± → qq W χ SUS-16-019 SUS-16-042 1l( ) x=0.5 ∆ φ 1 1 1 ~ ~ ~ ∼ ∼ 0 pp → g g , g → qq χ ± → qq W χ SUS-16-020 SUS-16-035 2l same-sign x=0.5 1 1 ~ ~ ~ ∼ ± ∼ 0 SUS-16-020 SUS-16-035 2l same-sign (M - M = 20 GeV) pp → g g , g → qq χ → qq W χ Interm. LSP ~ ~ ~ 0 1 1 0 ∼ ± ∼ ∼ SUS-16-014 SUS-16-033 0l(MHT) x=0.5 pp → g g , g → qq( χ / χ ) → qq (W/Z) χ ~ ~ ~ ∼ 1 ± ∼ 2 0 ∼ 0 1 pp → g g , g → qq( χ / χ ) → qq (W/Z) χ SUS-16-022 SUS-16-041 Multilepton x=0.5 1 2 1 ~ ~ ~ ∼ 0 pp t t , t t SUS-16-014 SUS-16-033 0l(MHT) → → χ ~ ~ ~ 0 1 ∼ pp → t t , t → t χ SUS-16-015 SUS-16-036 0l(MT2) ~ ~ ~ ∼ 1 0 pp t t , t t SUS-16-016 0l( α ) → → χ ~ ~ ~ 1 T ∼ 0 pp → t t , t → t χ SUS-16-027 SUS-17-001 2l opposite-sign ~ ~ ~ 1 ∼ 0 pp → t t , t → t χ SUS-16-028 SUS-16-051 1l ~ ~ ~ ∼ 1 0 pp → t t , t → t χ SUS-16-029 SUS-16-049 0l ~ ~ ~ 1 ∼ 0 pp → t t , t → t χ SUS-16-030 0l ~ ~ ~ 1 ∼ 0 SUS-16-032 0l (Max exclusion for M - M < 80 GeV) pp → t t , t → c χ Mother LSP ~ ~ ~ ∼ 1 0 SUS-16-036 0l(MT2) (Max exclusion for M - M < 80 GeV) pp → t t , t → c χ LSP CMS Preliminary ~ ~ ~ Mother ∼ 1 0 pp → t t , t → c χ SUS-16-049 0l (Max exclusion for M - M < 80 GeV) LSP Squark ~ ~ ~ ∼ 0 1 Mother SUS-16-025 SUS-16-048 2l soft (Max exclusion for M - M < 80 GeV) pp → t t , t → b f f χ (4-body) LSP ~ ~ ~ Mother ∼ 0 1 pp → t t , t → b f f χ (4-body) SUS-16-029 SUS-16-049 0l (Max exclusion for M - M < 80 GeV) • What is required to discover new physics? LSP ~ ~ ~ ∼ 0 1 Mother SUS-16-031 1l soft (Max exclusion for M - M < 80 GeV) pp → t t , t → b f f χ (4-body) LSP s = 13TeV ~ ~ ~ Mother ∼ 1 ∼ 0 pp → t t , t → χ ± b → b W ± χ SUS-16-028 SUS-16-051 1l x=0.5 ~ ~ ~ 1 1 ∼ ∼ 0 pp → t t , t → χ ± b → b W ± χ SUS-16-029 SUS-16-049 0l x=0.5 ~ ~ ~ 1 1 ∼ ± ± ∼ 0 SUS-16-036 0l(MT2) x=0.5 pp → t t , t → χ b → b W χ ~ ~ ~ -1 -1 ∼ 1 ∼ 1 0 L = 12.9 fb L = 35.9 fb pp → t t , t → χ ± b → b W ± χ SUS-17-001 2l opposite-sign x=0.5 1 ~ ~ ~ 1 ∼ 0 SUS-16-014 SUS-16-033 0l(MHT) pp → b b , b → b χ ~ ~ ~ ∼ 0 1 SUS-16-015 SUS-16-036 0l(MT2) pp → b b , b → b χ flavor physics, leptoquarks, composite Majorana neutrino… ~ ~ ~ ∼ 0 1 pp b b , b b SUS-16-016 0l( α ) → → χ Not in this talk: NP in Higgs sector, displaced vertices, ~ ~ ~ ∼ 0 1 T pp → b b , b → b χ SUS-16-032 0l ~ ~ ~ ~ ~ ~ ~ ~ ~ ∼ 1 0 pp q q , q q q + q ( u , d , c , s ) → → χ SUS-16-014 SUS-16-033 0l(MHT) ~ 1 R L ~ ~ ~ ~ ~ ~ ~ ~ ∼ 0 pp → q q , q → q χ SUS-16-015 SUS-16-036 0l(MT2) q + q ( u , d , c , s ) 1 R L • understanding SM backgrounds ∼ 0 ∼ ∼ 0 ∼ 0 pp → χ χ ± → lll ν χ χ SUS-16-024 SUS-16-039 Multilepton (flavour democratic) x=0.5 EWK Gauginos 2 1 1 1 ∼ 0 ∼ ± ∼ 0 ∼ 0 pp → χ χ → lll ν χ χ SUS-16-039 Multilepton + 2l same-sign (flavour democratic) x=0.95 2 1 1 1 ∼ 0 ∼ ± ∼ 0 ∼ 0 SUS-16-039 Multilepton (tau enriched) x=0.5 pp → χ χ → ll τ ν χ χ ∼ 2 0 ∼ ± 1 ∼ 1 0 ∼ 1 0 pp → χ χ → τ τ τ ν χ χ SUS-16-039 Multilepton (tau dominated) x=0.5 2 1 1 1 ∼ 0 ∼ ± ∼ 0 ∼ 0 For decays with intermediate mass, pp → χ χ → W Z χ χ SUS-16-024 SUS-16-039 Multilepton ∼ 2 0 ∼ 1 ∼ 1 0 ∼ 0 1 Disclaimer: Results from only ATLAS and CMS ± SUS-16-039 Multilepton pp → χ χ → W H χ χ m = x ⋅ m +(1-x) ⋅ m ∼ 0 2 ∼ 1 ∼ 1 0 ∼ 0 1 pp → χ χ ± → W Z χ χ SUS-16-025 SUS-16-048 2l soft (Max exclusion for M - M < 40 GeV) LSP Intermediate Mother LSP 2 1 1 1 Mother 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Mass Scale [GeV] *Observed limits at 95% C.L. - theory uncertainties not included • tools and techniques Only a selection of available mass limits. Probe *up to* the quoted mass limit for m ≈ 0 GeV unless stated otherwise LSP • common procedures • New Physics status • Supersymmetry • Strong and EWK processes • New heavy particles • VLQ, excited quarks, heavy bosons • Dark matter • Prospectives of discovering NP at the HL-LHC 4 Sadia Khalil, DPF, Fermilab, USA, Jul-Aug, 2017
Large Hadron Collider 7/8/13 TeV proton—proton collisions ATLAS/CMS: 5 & 25 fb -1 /exp 2011-12 @ 7 & 8 TeV • 36 fb -1 (2015-2016) & 6 fb -1 (2017) / exp @ 13 TeV • LHCb ATLAS MOEDAL LHCf p ALICE CMS p TOTEM Sadia Khalil, DPF, Fermilab, USA, Jul-Aug, 2017 5
Standard Model Backgrounds • Precise measurements of SM background is essential for accurate MC simulations W+jets Z+jets tt+jets t+jets VV H+jets ttV Vjj V 𝛿𝛿 VVjj NP? Sadia Khalil, DPF, Fermilab, USA, Jul-Aug, 2017 6
Background Estimation • Main backgrounds are mostly estimated from data • Significant reduction in total systematic uncertainty due to detector response/simulations arXiV: 1410.1280 Signal Region Validation Region Control Region Sadia Khalil, DPF, Fermilab, USA, Jul-Aug, 2017 7
Recommend
More recommend