new forms of hadronic nuclei
play

New forms of hadronic nuclei Tomofumi NAGAE, Kyoto University - PowerPoint PPT Presentation

Forefront Research Program (b) New forms of hadronic nuclei Tomofumi NAGAE, Kyoto University GCOE Sympo., Kyoto, 12-Feb.-2013 Contents Introduction of Hadronic Nuclei Recent topics in Strangeness Nuclear Physics Strangeness Nuclear


  1. Forefront Research Program (b) New forms of hadronic nuclei Tomofumi NAGAE, Kyoto University GCOE Sympo., Kyoto, 12-Feb.-2013

  2. Contents Introduction of Hadronic Nuclei Recent topics in Strangeness Nuclear Physics Strangeness Nuclear Physics program at J-PARC E19, E27, ..., E15, E10, E05 Summary

  3. p・n:~10 -¹⁵ m Atom:~10 -¹⁰ m Quark:<10 -¹⁹ m Electron:<10 -¹⁸ m Nucleus:~10 -¹⁴ m Normal Nuclei e u d u d d u u e d d u u d

  4. u u d proton neutron u d d Ordinary Nucleus Normal Nuclei +2/3e -1/3e Up Down 3 6 Charm Strange 1,250 100 Top Bottom 174,300 4,300

  5. Λ s Ξ Λ、 Σhypernuclei Double-Λhypernuclei Ξhypernuclei u d s d s Hadronic Nuclei with Strangeness Hypernuclei : Hyperons( Λ, Σ, Ξ ) in Nuclei Baryon-Baryon Interactions in SU F (3) Role of Strangeness in Dense Matter

  6. u u d d Penta-quark s Kaonic Nuclei s u K- Meson u K+ Meson s Exotic Systems

  7. 3-dim. Nuclear Chart New type of Hypernuclei Strangeness � Stable ~300, Unstable >3000 ΛΛ , Ξ Hypernuclei ΛΛ Λ Λ ~3, Ξ ? Z Λ , Σ Hypernuclei -2 Λ ~38, Σ =1 N -1 0 by H. Tamura

  8. Quark-Gluon Λ Big Bang Neutron Star Normal Nuclei Λ Σ Ξ Λ Λ K Λ Λ Λ K Plasma K (g/cm 3 ) Density u d d s u d s Hadron Gas Role of strangeness in dense matter 4x10 12 ) K ( e 3x10 12 RHIC r u t LHC a r e p 2x10 12 m e T 1x10 12 J-PARC 0 1x10 15 2x10 15 0 Strangeness s u

  9. From 1974 Nobel Lecture by A. Hewish , “Pulsars and High Density Physics”, At yet deeper levels the neutron- neutron interaction may result in the creation of a solid neutron lattice, although this possibility is under debate, and finally there is the question of a material composed of stable hyperons. Strangeness nuclear physics can have an answer Fig. 5. Model of a neutron star.

  10. World Facilities in the 21st Century HI, anti-p GSI/FAIR Mainz (e,e’K + ) DA � NE (K - , π - ) J-PARC (K - ,K + ), (K - , π - ) JLab (e,e’K + )

  11. J-PARC Facility (KEK/JAEA ) Linac South to North 3 GeV Synchrotron Neutrino Beams (to Kamioka) Materials and Life Experimental 50 GeV Facility Synchrotron CY2007 Beams Hadron Exp. JFY2008 Beams Facility JFY2009 Beams Photo in July of 2009 11

  12. Recent topics In Strangeness Nuclear Physics

  13. Λ 6 H in FINUDA M. Agnello et al., PRL 108 (2012) 042501. Produced in the 6 Li(K -stop , π + ) reaction Glue-like role of Λ K � � H þ � þ ð p � þ � 252 MeV =c Þ stop þ 6 Li ! 6 � H ! 6 He þ � � ð p � � � 134 MeV =c Þ ; 6 260 400 250 350 momentum (MeV/c) 300 counts/1 MeV 240 5 250 H + 5805.44 MeV [2] 200 230 150 3 5803.74 220 H + 2n + 100 50 210 + 0 4 120 140 160 180 200 220 240 H + n + n 5801.70 200 - + T( ) + T( ) (MeV) 5801.43 5801.24 [1] MeV 190 FIG. 1 (color online). Distribution of raw total kinetic energy 120 130 140 150 160 170 180 190 200 210 T sum � T ð � þ Þ þ T ð � � Þ for � � pair coincidence events from - momentum (MeV/c) 6 6 Li targets. The vertical (red) bar represents the cut T sum ¼ H 5799.64 [3] 202 – 204 MeV . The dashed (blue) histogram is a quasifree stop þ 6 Li ! � þ þ 4 He þ n þ � � ; � þ ! K � simulation of � H mass (RHS) from three 6 6 FIG. 3 (color online). � H candi- n þ � þ background, and the dotted (violet) histogram is a date events, as related to several particle stability thresholds and four-body phase space simulation of the same background. theoretical predictions (LHS). Their best fit to the data is shown by the solid (black) histogram; see the text.

  14. Anti-Hypernucleus at RHIC The STAR Collaboration, Science 328 (2010) 58. Λ H → π + + 3 He 3 Λ H / 3 A 3 Λ H = 0 . 49 ± 0 . 18 ± 0 . 07 50 cm A B 350 140 3 H 300 120 Λ 250 100 Counts Counts 200 80 150 60 signal candidates signal candidates 100 40 rotated background rotated background 50 20 signal+background fit signal+background fit 0 0 + π 2.95 3 3.05 3.1 2.95 3 3.05 3.1 3 3 2 + 2 - He + π Invariant mass (GeV/c ) He + π Invariant mass (GeV/c ) 3 He C D Life time( 3 Λ H)=182+89/-45±27 ps

  15. Recent data on K - pp First evidence of K - pp with 6 Li+ 7 Li+ 12 C B=115+6/-5+3/-4 MeV Γ = 67+14/-11+2/-3 MeV M. Agnello et al., PRL94, (2005) 212303 � Confirmed for 6 Li only, with better statistics S. Piano@Hyp-X stop New A= 6 Li, 7 Li, 12 C inv mass spectra A= 6 Li no acceptance corrected no acceptance corrected compatible with published one New data Old data Same cuts applied FINUDA Coll., PRL 94(2005)212303 - B (K pp) [MeV] 200 100 0 DISTO data: p+p → K - pp + K + at 2.85 GeV (a) large-angle proton: high- P (p) T 2.5 M = 2267 (2) M (K+p+p) = 2370 M=2267±3±5 MeV/c 2 Deviation UNC/SIM (arb. scale) 2.0 Γ = 118±8±10 MeV 1.5 Γ = 118 (8) 1.0 M ( Σ + π +p) = 2267 M ( Λ *+p) = 2345 T. Yamazaki et al., PRL 104 (2010) 132502. 0.5 0 2150 2200 2250 2300 2350 2400 2450 2 Missing Mass ∆ M (K) [MeV/ c ]

  16. Dote et al. ρ>ρ0x10 !? Formation of High Density State Formation of Cold(T=0) and Dense( ρ >5 ρ 0) nuclear matter Chiral symmetry restoration Kaon condensation 4 fm 4 fm 4 fm E(K) = 110 MeV E(2K) = 213 MeV |<qq> ρ ,T | Density [fm -3 ] Density [fm -3 ] Density [fm -3 ] 0.00 0.07 0.14 0.00 0.75 1.50 0.0 1.5 3.0 Normal Nucleus ppn ppnK - ppnK - K - 300 MeV 5 ρ 0 total B.E. = 6.0 MeV total B.E. = 118 MeV total B.E. = 221 MeV T central density = 1.50 fm -3 central density = 0.14 fm -3 central density = 3.01 fm -3 Temperature ρ R rms = 1.59 fm R rms = 0.72 fm R rms = 0.69 fm Density T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. 55 55 (1985) 158. W. Weise, Nucl. Phys. A4 A443 (1993) 59c.

  17. Baryon force: From phenomenology to 1 st principle Ø NN int.: about 4500 np and pp scatt. data “high precision” NN interactions # of parameters CD Bonn (p space) 38 AV18 (r space) 40 EFT in N 3 LO (n π +contact) 24 R. Machleidt, arXiv:0704.0807 [nucl-th] Ø NNN, YN, YY : data very limited Ø YNN, YYN, YYY : none QCD has only four parameters : m u , m d , m s , Λ QCD

  18. Sasaki ¡et ¡al. ¡ SU(3) breaking: coupled channel LQCD [HAL ¡QCD ¡Coll.] ¡(2012) Example: ¡ ¡S=-­‑1, ¡ 3 S 1 , ¡I=1/2 (m π /m K =0.89, ¡0.8) ΣN-­‑ΣN ΛN-­‑ΣN ΛN-­‑ΛN PACS-­‑CS ¡(2+1)-­‑flavor ¡config. L=2.9 ¡fm

  19. SNP Program at J-PARC

  20. Hadron Experimental Hall World highest intensity Kaon beams ! First beam in Feb. 2009 60m x 56m SKS K1.8 High p (not yet) K1.8BR 20 KL K1.1 Production target (T1) K1.1BR 30~50 GeV Primary Beam

  21. SNP Program Schedule 2010: Oct.-Nov. E19: Penta-quark search in π - p → K - X at 1.92 GeV/c First physics data taking in Hadron Hall 2012: Feb. , after the Earthquake E19: π - p → K - X at 2 GeV/c 2012: June E27: d( π + ,K + ) for K - pp , a pilot run 5 kW / 270 kW

  22. SNP Program Schedule In near future... 2012: Dec. 10 kW E10: ( π - ,K + ) 6 Λ H 2013: March - June > 10 kW E15: 3 He(K - ,n) for K - pp E13: Hypernuclear γ -ray spectroscopy; 4 Λ He, 19 Λ F E05: Ξ hypernuclei; 12 C(K - ,K + )

  23. High-resolution search for Θ + in π - p → K - X reaction: E19 M. Naruki et al. π - p → K - Θ + at 1.92 GeV/c SKS SKS Spectrometer at K1.8 Target ∆ E=13.4 MeV → 1.4 MeV Κ " KEK PS E522: K. Miwa et al., PLB635 (2006) 72. π " K1.8 beam line spectrometer S/N=2.5 σ d σ /d Ω =1.9µb/sr, if true.

  24. Expected ¡Missing ¡Mass ¡Spectrum assuming ¡d σ / d Ω ¡= ¡1.9 µ b/sr ¡ (lab) Δ M = 2.5MeV(FWHM) we ¡aim ¡to; ¡ l confirm ¡ Θ + with ¡high ¡ statistics l study ¡momentum ¡ dependence ¡of ¡cross ¡ section Background ¡sourc ources φ φ n à K + K – n 30.0±8.0 ¡ µ b Λ Λ (1520)K 0 à K – K 0 p 20.8±5.0 ¡ µ b phase space K – KN 26 ¡ µ b

  25. 1st ¡run ¡result ¡of ¡E19 Shirotori et al., PRL 109, 132002 (2012). π − + p → K − + X @ 1.92 GeV/c data E19-1st background (sim.) ü s-­‑channel ¡dominance ü Γ Θ ∝ g 2KN Θ ∝ σ tot è Upper ¡limit ¡of ¡decay ¡width • No ¡prominent ¡peak ¡structure • 0.72 ¡MeV ¡for ¡½+ • Upper ¡limit: ¡ < 0.26 µ b/sr @ 1.51 − 1.55 GeV/c 2 • ¡3.1 ¡MeV ¡for ¡½-­‑ 25

  26. 2nd ¡run ¡of ¡E19 Theoretical calculations : Hyodo, Hosaka, PRC 72, 055202 (2005). • Beam ¡Fme: ¡2012/Feb J p =1/2 + , Γ Θ + = 1MeV 4 • Higher ¡beam ¡momentum ¡ ¡ ¡ ¡ 2.0 ¡GeV/c ¡ ¡ ( ¡= ¡Max. ¡of ¡K1.8 ¡B.L.) PV Fs 500MeV • ExpecFng ¡increased ¡cross ¡secFon PV Fc 1800MeV p lab =2.0 GeV/c è higher ¡sensiFvity 2 σ [ µ b] è Stringent ¡restricFon ¡ ¡ ¡ ¡ ¡ ¡ ¡on ¡the ¡ Θ + ¡decay ¡width. p lab = 1.92 GeV/c 0 1800 2000 2200 2400 2600 sqrt(s) [MeV] 26

Recommend


More recommend