new developments in hypergraph ramsey theory
play

New developments in hypergraph Ramsey theory Dhruv Mubayi - PowerPoint PPT Presentation

New developments in hypergraph Ramsey theory Dhruv Mubayi Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago IHP, Paris, January 30, 2018 Outline Classical Ramsey numbers Generalizations and


  1. New developments in hypergraph Ramsey theory Dhruv Mubayi Department of Mathematics, Statistics and Computer Science University of Illinois at Chicago IHP, Paris, January 30, 2018

  2. Outline • Classical Ramsey numbers Generalizations and Extensions • Erd˝ os-Hajnal Problem • Erd˝ os-Rogers Problem • Erd˝ os-Gy´ arf´ as-Shelah Problem • A proof idea (Stepping up with zigzags)

  3. Ramsey theory for hypergraphs Definition Given k ≥ 2 and k -uniform hypergraphs H 1 , H 2 , the ramsey number r ( H 1 , H 2 ) is the minimum N such that every red/blue coloring of the k -sets of [ N ] results in a red copy of H 1 or a blue copy of H 2 . Write r k ( s , n ) := r ( K k s , K k n ) .

  4. Ramsey theory for hypergraphs Definition Given k ≥ 2 and k -uniform hypergraphs H 1 , H 2 , the ramsey number r ( H 1 , H 2 ) is the minimum N such that every red/blue coloring of the k -sets of [ N ] results in a red copy of H 1 or a blue copy of H 2 . Write r k ( s , n ) := r ( K k s , K k n ) . Observation Note that r k ( s , n ) ≤ N is equivalent to saying that every N-vertex K k s -free k-uniform hypergraph H has α ( H ) ≥ n.

  5. Small examples Example Graphs: r 2 (3 , 3) = 6 r 2 (4 , 4) = 18 r 2 (3 , 3 , 3) = 17 Example Hypergraphs: r 3 (4 , 4) = 13 (McKay-Radziszowski 1991)

  6. Graphs Theorem (Spencer 1977, Conlon 2008) √ 4 n 2 e n 2 n / 2 < r 2 ( n , n ) < (1 + o (1)) n c log n / log log n Theorem (Ajtai-Koml´ os-Szemer´ edi 1980, Kim 1995) � n 2 � r 2 (3 , n ) = Θ log n

  7. Graphs Theorem (Spencer 1977, Conlon 2008) √ 4 n 2 e n 2 n / 2 < r 2 ( n , n ) < (1 + o (1)) n c log n / log log n Theorem (Ajtai-Koml´ os-Szemer´ edi 1980, Kim 1995) � n 2 � r 2 (3 , n ) = Θ log n Theorem For fixed s ≥ 3 n ( s +1) / 2+ o (1) < r 2 ( s , n ) < n s − 1+ o (1)

  8. Hypergraphs - diagonal case Definition (tower function) twr i +1 ( x ) = 2 twr i ( x ) . twr 1 ( x ) = x and Theorem (Erd˝ os-Hajnal-Rado 1952/1965) 2 cn 2 < r 3 ( n , n ) < 2 2 n For fixed k ≥ 3 , twr k − 1 ( cn 2 ) < r k ( n , n ) < twr k ( c ′ n ) Conjecture (Erd˝ os $500) r 3 ( n , n ) > 2 2 cn .

  9. An equivalent statement Definition P 5 is the ordered 4-uniform hypergraph with 5 vertices v 1 < v 2 < v 3 < v 4 < v 5 and two edges ( v 1 , v 2 , v 3 , v 4 ) and ( v 2 , v 3 , v 4 , v 5 ) . Theorem (M-Suk 2017) or 4 ( P 5 , n ) > 2 2 c ′ n . r 3 ( n , n ) > 2 2 cn ⇐ ⇒

  10. Ordered tight path versus clique Definition A tight path of size s is an ordered hypergraph H, denoted by P k s with s vertices v 1 < · · · < v s ∈ [ n ] such that ( v j , v j +1 , . . . , v j + k − 1 ) is an edge for j = 1 , . . . , s − k + 1 . Let or k ( P s , n ) = or ( P ( k ) , K ( k ) ) . s n Theorem (M-Suk 2017) � � n n r 3 s − 3 , . . . , ≤ or 4 ( P s , n ) ≤ r 3 ( n , . . . , n ) . s − 3 � �� � � �� � s − 3 times s − 3 times

  11. Hypergraphs - The off-diagonal conjecture Conjecture (Erd˝ os-Hajnal 1972) For fixed s > k ≥ 3 we have r k ( s , n ) > twr k − 1 ( cn ) . In particular, r k ( k + 1 , n ) > twr k − 1 ( cn ) . Theorem (Erd˝ os-Hajnal 1972) r 3 (4 , n ) > 2 cn . Consequently, the conjecture holds for k = 3 .

  12. Hypergraphs - The off-diagonal conjecture Conjecture (Erd˝ os-Hajnal 1972) For fixed s > k ≥ 3 we have r k ( s , n ) > twr k − 1 ( cn ) . In particular, r k ( k + 1 , n ) > twr k − 1 ( cn ) . Theorem (Erd˝ os-Hajnal 1972) r 3 (4 , n ) > 2 cn . Consequently, the conjecture holds for k = 3 . Proof. Let T be a random graph tournament on N vertices and form a 3-uniform hypergraph by making each cyclically oriented triangle a hyperedge. There is no K (3) and yet the independence 4 number is n = O (log N ).

  13. Hypergraphs - The off-diagonal conjecture Theorem (Erd˝ os-Hajnal) The conjecture holds for s = 2 k − 1 − k + 3 ; i.e., r 4 (7 , n ) > 2 2 cn . Theorem (Conlon-Fox-Sudakov 2009) The conjecture holds for s = ⌈ 5 k / 2 ⌉ − 3 . Theorem (M-Suk 2017, Conlon-Fox-Sudakov 2017) The conjecture holds for all s ≥ k + 3 .

  14. Hypergraphs - The off-diagonal conjecture Theorem (Erd˝ os-Hajnal) The conjecture holds for s = 2 k − 1 − k + 3 ; i.e., r 4 (7 , n ) > 2 2 cn . Theorem (Conlon-Fox-Sudakov 2009) The conjecture holds for s = ⌈ 5 k / 2 ⌉ − 3 . Theorem (M-Suk 2017, Conlon-Fox-Sudakov 2017) The conjecture holds for all s ≥ k + 3 . The open cases are r 4 (5 , n ) and r 4 (6 , n ) and their k -uniform counterparts.

  15. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ):

  16. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972)

  17. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 cn 2 (M-Suk 2017)

  18. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 cn 2 (M-Suk 2017) • 2 n c log log n (M-Suk 2018?)

  19. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 cn 2 (M-Suk 2017) • 2 n c log log n (M-Suk 2018?) • 2 n c log n (M-Suk 2018?)

  20. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 cn 2 (M-Suk 2017) • 2 n c log log n (M-Suk 2018?) • 2 n c log n (M-Suk 2018?) Lower bounds for r 4 (6 , n ):

  21. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 cn 2 (M-Suk 2017) • 2 n c log log n (M-Suk 2018?) • 2 n c log n (M-Suk 2018?) Lower bounds for r 4 (6 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972)

  22. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 cn 2 (M-Suk 2017) • 2 n c log log n (M-Suk 2018?) • 2 n c log n (M-Suk 2018?) Lower bounds for r 4 (6 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 n c log n (M-Suk 2017)

  23. r 4 (5 , n ) and r 4 (6 , n ) Lower bounds for r 4 (5 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 cn 2 (M-Suk 2017) • 2 n c log log n (M-Suk 2018?) • 2 n c log n (M-Suk 2018?) Lower bounds for r 4 (6 , n ): • 2 cn (implicit in Erd˝ os-Hajnal 1972) • 2 n c log n (M-Suk 2017) • 2 2 cn 1 / 5 (M-Suk 2018?)

  24. The off-diagonal conjecture - almost solved Theorem (M-Suk 2018) r 4 (6 , n ) > 2 2 cn 1 / 5 r 4 (5 , n ) > 2 n c log n and for fixed k ≥ 4 r k ( k + 1 , n ) > twr k − 2 ( n c log n ) r k ( k + 2 , n ) > twr k − 1 ( cn 1 / 5 ) r k ( k + 1 , k + 1 , n ) > twr k − 1 ( cn ) .

  25. Many Colors Theorem (Erd˝ os-Rado, Erd˝ os-Hajnal-Rado, Duke-Lefmann-R¨ odl, Axenovich-Gy´ arf´ as-Liu-M) For s > k ≥ 2 there are c and c ′ with ) < twr k ( c ′ q log q ) . twr k ( c q ) < r k ( s , . . . , s � �� � q times Special Case: (Erd˝ os-Szekeres 1935) 2 c q < r 2 (3 , . . . , 3 ) < 2 c ′ q log q . � �� � q times

  26. The Erd˝ os-Hajnal Hypergraph Ramsey Problem Definition (Erd˝ os-Hajnal 1972) � s � For 1 ≤ t ≤ , let r k ( s , t ; n ) be the minimum N such that every k red/blue coloring of the k-sets of [ N ] results in an s-set that contains at least t red k-subsets or an n-set all of whose k-subsets are blue (i.e., a blue K k n ). Example � � s � � r k s , ; n = r k ( s , n ) k

  27. The Erd˝ os-Hajnal Hypergraph Ramsey Problem Problem (Erd˝ os-Hajnal 1972) � s � , there is a well-defined value t 1 = h ( k ) As t grows from 1 to 1 ( s ) k at which r k ( s , t 1 − 1; n ) is polynomial in n while r k ( s , t 1 ; n ) is exponential in a power of n, another well-defined value t 2 = h ( k ) 2 ( s ) at which it changes from exponential to double exponential in a power of n and so on, and finally a well-defined � s � value t k − 2 = h ( k ) k − 2 ( s ) < at which it changes from twr k − 2 to k twr k − 1 in a power of n.

  28. The Erd˝ os-Hajnal Hypergraph Ramsey Conjectures Conjecture (Erd˝ os-Hajnal $500) The first jump h ( k ) 1 ( s ) is one more than the number of edges in the k-uniform hypergraph obtained from a complete k-partite k-uniform hypergraph on s vertices with almost equal part sizes, by repeating this construction recursively within each part. Conjecture (Erd˝ os-Hajnal) h ( k ) r k ( k + 1 , t ; n ) = twr t − 1 ( n Θ ( 1 ) ) . ( k + 1) = i + 2 ⇐ ⇒ i Theorem (Erd˝ os-Hajnal) 2 cn < r k ( k + 1 , t ; n ) < twr t − 1 ( n c ′ ) .

  29. Stepping up Conjecture (Erd˝ os-Hajnal 1972) r k ( k + 1 , t ; n ) = twr t − 1 ( n Θ ( 1 ) ) . Theorem (M-Suk 2018) For fixed 3 ≤ t ≤ k − 2 , � twr t − 1 ( n k − t +1+ o (1) ) twr t − 1 ( n k − t +1+ o (1) ) > r k ( k +1 , t ; n ) > twr t − 1 ( n ( k − t +1) / 2+ o (1) ) where the first inequality is when k − t is even and the second when k − t is odd.

  30. The Erd˝ os-Rogers Problem Definition A t-independent set in a k-uniform hypergraph H is a vertex subset that contains no K k t . When t = k it is just an independent set. Write α t ( H ) for the maximum size of a t-independent set in H. Definition (Erd˝ os-Rogers function 1962) f k t , s ( N ) = min { α t ( H ) : | V ( H ) | = N , K k s �⊂ H } . Example f 2 2 , 3 ( N ) < n ⇐ ⇒ ∃ K 3 -free G with N vertices and α ( G ) < n. r k ( s , n ) = min { N : f k k , s ( N ) ≥ n } .

Recommend


More recommend