neutron compton scattering as a probe of hydrogen bonded
play

Neutron Compton Scattering as a Probe Of Hydrogen Bonded Systems - PDF document

Neutron Compton Scattering as a Probe Of Hydrogen Bonded Systems George Reiter Jerry Mayers Collaborators P. Platzman J. Noreland J.C.Li Outline How do You Extract the Momentum Dis- tribution? How Much Detail Can One See? How Does


  1. Neutron Compton Scattering as a Probe Of Hydrogen Bonded Systems George Reiter Jerry Mayers Collaborators P. Platzman J. Noreland J.C.Li

  2. Outline How do You Extract the Momentum Dis- tribution? How Much Detail Can One See? How Does Tunnelling Show Up? Results For KDP Results for Water and Ice

  3. Neutron Scattering in the Impulse Approximation Limit Deep Inelastic Neutron Scattering � n ( � hq 2 p ) δ ( ω − ¯ 2 M − � p.� q S M ( � q, ω ) = M ) d� p ¯ hω is the energy transfer, M is the mass of the tar- get particle, q= | � q | is the magnitude of the wavector transfer and n( � p ) is the momentum distribution. � n ( � q, ω ) = M p = M S M ( � p ) δ ( y − � p. ˆ q ) d� q J (ˆ q, y ) q hq 2 q ( ω − ¯ y= M 2 M ), ˆ q = � q/q

  4. A Very Useful Theorem If we express J(ˆ q, y ) as q, y ) = e − y 2 J (ˆ a n,l,m H 2 n + l ( y ) Y lm (ˆ q ) � 1 n,l,m π 2 then l + 1 p ) = e − p 2 2 2 n + l n !( − 1) n a n,l,m p l L ( p 2 ) Y lm (ˆ 2 n ( � � p ) n 3 n,l,m π 2

  5. Statistical Errors in Measured n( � p ) δn ( � p ) δn ( � p ) = δρ i δρ i � i p ) 2 > = δn ( � p ) δn ( � p ) < δn ( � < δρ i δρ j > � δρ i δρ j i,j

  6. Momentum Distribution Along Bond 0.007 0.006 momentum distribution 0.005 error limits anharmonicity 0.004 n(p) 0.003 0.002 0.001 0 0 5 10 15 20 25 pz-inv. Angstroms

  7. KHC 2 O 4

  8. Momentum Distribution for Two Displaced Gaussians of Relative Weight r p 2 i − 2 σ 2 n ( p x , p y , p z )= (1+ r 2 +2 rcos (2 p z a )) e i � − a 2 1 i (2 πσ i ) 2 2 σz 2 ) (1+ r 2 +2 re If r=1,then p 2 i − 2 σ 2 n ( p x , p y , p z )= 2 cos 2 ( p z a ) e i � − a 2 1 i (2 πσ i ) 2 2 σz 2 ) (1+ e

  9. KDP Momentum Distribution Along Bond 0.008 Ab−initio Experiment 0.006 T=130K T=90K 0 10 20 30 0.004 n(p) 0.002 0 0 10 20 30 Momentum (Inv. Angstroms) −0.002

  10. Direct Measurement of the Born-Oppenheimer Potential � Φ( � p ) = ± n ( � p ) � e i� p · � r Φ( � Ψ( � r ) = p ) d� p � p 2 2 M e i� p · � r Φ( � p ) d� p E − V ( � r ) = � e i� p · � r Φ( � p ) d� p

  11. KDP Potential and Wavefunction 2000 Potential Wave Function(arb. units) 1500 1000 MILLI−EV 500 0 −500 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 Angstroms

  12. hydrogen momentum distribution in water 0.01 ice −4C 23C 1bar 0.008 radial momentum distribution p**2 n(p) 300C 100 bar 400C 750 bar errors errors 0.006 0.004 0.002 0 0 10 20 30 momentum−inv. angstroms

  13. Simulated Data, r=.5

Recommend


More recommend