neutrino physics from the cmb large scale structure report
play

Neutrino Physics from the CMB & Large Scale Structure - Report - PowerPoint PPT Presentation

Neutrino Physics from the CMB & Large Scale Structure - Report - Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Contributors: K.N. Abazajian, B.A. Benson, J. Bock, J. Borrill, J.E. Carlstrom, C.L. Chang, S. Church, A. Cooray,


  1. Neutrino Physics from the CMB & Large Scale Structure - Report - Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Contributors: K.N. Abazajian, B.A. Benson, J. Bock, J. Borrill, J.E. Carlstrom, C.L. Chang, S. Church, A. Cooray, T.M. Crawford, K.S. Dawson, S. Das, S. Dodelson, J. Errard, S. Hanany, W.L. Holzapfel, K. Honscheid, M. Kamionkowski, R. Keisler, L. Knox, J. Kovac, C.-L. Kuo, C. Lawrence, A.T. Lee, E. Linder, P. Lubin, A. Miller, M.D. Niemack, C. Pryke, C. Reichardt, U. Seljak, E. Silverstein, A. Slosar, R. Stompor, A. Vieregg, E.J. Wollack, W.L.K. Wu, K.W. Yoon, and O. Zahn Paper: http://is.gd/AnSecR [arXiv on Friday (?)] Cosmic Frontier Snowmass Community Summer Study 2013 August 1, 2013

  2. The Cosmological Matter Power Spectrum Inflation: ? Perturbations enter horizon: Matter Domination Radiation Domination [ δΦ mat const] [ δΦ rad decays] horizon size P(k) → k →

  3. How does probe neutrinos? (Assuming thermal equilibrium)

  4. How does probe neutrinos? (Assuming thermal equilibrium) P(k) → k →

  5. How does probe neutrinos? (Assuming thermal equilibrium) Radiation Matter Domination Domination P(k) → k →

  6. How does probe neutrinos? (Assuming thermal equilibrium) Radiation Matter Domination Domination P(k) → k →

  7. How does probe neutrinos? (Assuming thermal equilibrium) Radiation Matter Domination Domination P(k) → Is this a coincidence? k →

  8. How does probe neutrinos? (Assuming thermal equilibrium) � Radiation Matter Domination ρ ν = m i n ν i Domination � m ν i P(k) → Ω ν ≈ 93 h 2 eV E 2 = p 2 + m 2 Is this a coincidence? k →

  9. Distinguishing Features in the Power Spectrum Σ m ν i = 0 . 14 eV P(k) → Σ m ν i = 1 . 4 eV Lesgourgues & Pastor (2006) k → 1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing) 2. Relative Amplitude Information: ∆ P ( k ) = − 8 Ω ν CMB plus Lyman-alpha Forest, Galaxy Bias P ( k ) Ω m

  10. Distinguishing Features in the Power Spectrum Σ m ν i = 0 . 14 eV P(k) → Galaxy Surveys Σ m ν i = 1 . 4 eV Lesgourgues & Pastor (2006) k → 1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing) 2. Relative Amplitude Information: ∆ P ( k ) = − 8 Ω ν CMB plus Lyman-alpha Forest, Galaxy Bias P ( k ) Ω m

  11. Distinguishing Features in the Power Spectrum Σ m ν i = 0 . 14 eV P(k) → Galaxy Surveys Σ m ν i = 1 . 4 eV Relative Amplitude:CMB+Lya Lesgourgues & Pastor (2006) k → 1. Shape Information: Galaxy Surveys (Future: CMB lensing, Weak Lensing) 2. Relative Amplitude Information: ∆ P ( k ) = − 8 Ω ν CMB plus Lyman-alpha Forest, Galaxy Bias P ( k ) Ω m

  12. The Primordial Spectrum: Precision Determination at Large Scales P(k) → k → P ( k ) = Ak n Planck 1-Year + WMAP Pol.: (Planck Collab. 2013) A = 2 . 196 +0 . 051 (3%) − 0 . 060 n = 0 . 9603 ± 0 . 0073 (0 . 8%)

  13. Measuring P ( k ): from largest to smallest scales CMB SDSS Ly- α

  14. Upcoming High-Precision Era: Relative Change to P ( k )

  15. Ω m & Other Parameter Degeneracy Ω m

  16. Cosmological Matter Power Spectrum & CMB Constraints on N eff For LSS: Perturbations enter horizon at M/R equality Matter Domination Radiation Domination [ δΦ mat const] [ δΦ rad decays] horizon size P(k) → k → For BAO: Extra radiation changes expansion rate from perturbation evolution through baryon decoupling

  17. & N eff [Dodelson (SLAC Cosmic Frontiers)]

  18. Summary of Cosmological N eff Measures • SDSS BOSS Galaxy Clustering + BAO + WMAP 7 + SNe + H 0 (Zhao et. al 2012) N e ff = 4 . 308 ± 0 . 794 WMAP7 68% CL • SPT + WMAP 7 + H 0 (Hou et al. 2012) ... N e ff = 3 . 71 ± 0 . 35 • ACT + WMAP 7 + BAO + H 0 (Sievers et. al 2013) N e ff = 2 . 78 ± 0 . 55 • WMAP 9 + eCMB + BAO + H 0 (Hinshaw et al. 2012 v2 ) WMAP9 N e ff = 3 . 84 ± 0 . 40 Planck • Planck + high-l CMB + WMAP P + BAO (Planck Collab. 2013) N e ff = 3 . 30 ± 0 . 27

  19. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m

  20. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m � m ν i Ω ν ≈ 93 h 2 eV

  21. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m � m ν i Ω ν ≈ 93 h 2 eV ⇒ m ν . (1% / 8) × Ω m (93 h 2 eV) =

  22. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m � m ν i Ω ν ≈ 93 h 2 eV ⇒ m ν . (1% / 8) × Ω m (93 h 2 eV) = ⇒ m ν . 20 meV =

  23. Estimating Upcoming Cosmological Neutrino Mass Constraints ∆ P ( k ) ≈ 1% ≈ − 8 Ω ν Hu, Eisenstein & Tegmark 1998 P ( k ) Ω m � m ν i Ω ν ≈ 93 h 2 eV ⇒ m ν . (1% / 8) × Ω m (93 h 2 eV) = ⇒ m ν . 20 meV = Kaplinghat et al PRL 2003 (CMB WL) Wang et al PRL 2005 (WL Clusters) De Bernardis et al. 2009 (Opt. WL) Joudaki & Kaplinghat 2011 (LSST) Basse et al. 2013 (Euclid) CF5 Neutrino Report 2013

  24. Lensing of the CMB Hu & Okamoto 2001

  25. Lensing of the CMB Hu & Okamoto 2001

  26. Lensing of the CMB • Higher-order statistics in CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck) Hu & Okamoto 2001

  27. Lensing of the CMB • Higher-order statistics in CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck) • Lensing also mixes polarization E modes to B modes, providing more information. (detected by SPT) Hu & Okamoto 2001

  28. Lensing of the CMB • Higher-order statistics in CMB T maps can reconstruct the lensing potential. (detected by SPT, ACT, Planck) • Lensing also mixes polarization E modes to B modes, providing more information. (detected by SPT) • Detailed, high signal-to- noise measurements of arcminute polarization can therefore be used to reconstruct the lensing Hu & Okamoto 2001 potential C L φφ

  29. Lensing Potential Power: Relative Change over an Integrated P ( k )

  30. Σ m ν : The March of Time

  31. Σ m ν : The March of Time 2 (95% CL) m ν [eV] 1 X

  32. Σ m ν : The March of Time 2 (95% CL) m ν [eV] 1 X

  33. Σ m ν : The March of Time 2 (95% CL) m ν [eV] 1 X 2003

  34. Σ m ν : The March of Time 2 (95% CL) 2dFGRS m ν [eV] 1 X 2003

  35. Σ m ν : The March of Time 2 (95% CL) 2dFGRS m ν [eV] 1 X 2003 2006

  36. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time

  37. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS

  38. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010

  39. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone

  40. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone 2012

  41. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012

  42. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO

  43. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO 2013

  44. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO ACT + WMAP 7 + BAO 2013

  45. (95% CL) X m ν [eV] 1 2 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO ACT + WMAP 7 + BAO 2013 Planck + BAO

  46. (95% CL) X m ν [eV] 1 2 Oscillations 2003 2dFGRS SDSS P g + WMAP 1 2006 Σ m ν : The March of Time WMAP 3 + LSS 2010 WMAP 7 + SDSS LRG BAO WMAP 7 alone SDSS BOSS + WMAP 7 2012 WMAP 9 + BAO ACT + WMAP 7 + BAO 2013 Planck + BAO

  47. Cosmological & Laboratory Complementarity

  48. CMB & LSS Complementarity: Parameter Degeneracy

  49. Stage IV CMB + DESI: Σ m ν vs. N eff

  50. Forecast Sensitivities σ ( N eff ) σ ( Σ m ν ) CF5 Neutrino Paper

  51. Forecast Sensitivities σ ( N eff ) σ ( Σ m ν ) CF5 Neutrino Paper

  52. Neutrino Mass from Cosmology: What would break if cosmology and neutrino experiment disagree? P(k) → 1. Primordial power spectrum P ( k ) is a simple power law k → 2. No other prevalent “non-vanilla” cosmological parameters and physics: w , N eff , modified gravity...

  53. Summary

Recommend


More recommend