nernst branes from special geometry
play

Nernst Branes from special geometry David Errington March 5, 2015 - PowerPoint PPT Presentation

Nernst Branes from special geometry David Errington March 5, 2015 arXiv:hep-th/1501 . 07863 Paul Dempster, DE, Thomas Mohaupt Outline Holographic Motivation Real formulation of special geometry Constructing Nernst branes Interpretation


  1. Nernst Branes from special geometry David Errington March 5, 2015 arXiv:hep-th/1501 . 07863 Paul Dempster, DE, Thomas Mohaupt

  2. Outline Holographic Motivation Real formulation of special geometry Constructing Nernst branes Interpretation Conclusion and Outlook

  3. Holographic Motivation Real Formulation Construction Interpretation Conclusion AdS d +1 /CFT d asymptotically AdS gravity in bulk ← → CFT on boundary strong/weak coupling duality explore previously inaccessible systems e.g. AdS/CMT D. Errington Slide 1 / 42

  4. Holographic Motivation Real Formulation Construction Interpretation Conclusion AdS/CMT thermal ensemble in field theory black objects in bulk with same thermodynamic properties ( T , S , µ, . . . ) CMT obeys all thermodynamic laws. There is a well established correspondence between laws of thermodynamics and laws of black hole mechanics. We need to build black objects that satisfy all of these. D. Errington Slide 2 / 42

  5. Holographic Motivation Real Formulation Construction Interpretation Conclusion Nernst Law/3 rd law of thermodynamics All black objects seem to satisfy the 0 th , 1 st and 2 nd laws. There are several different forms of third law. We follow strictest definition (unique ground state): T − → 0 − − − − → 0 holding other parameters fixed S Not always true e.g. RN black holes/branes have large S ( T = 0) � = 0 indicating there isn’t a unique ground state. Explained by microstate counting of D-branes or by stringy higher curvature corrections for certain BPS BHs Are there gravitational systems with S ( T = 0) = 0? There do exist small black holes with S ( T = 0) = 0 but . . . D. Errington Slide 3 / 42

  6. Holographic Motivation Real Formulation Construction Interpretation Conclusion Why branes? T → 0 − − − → 0 means vanishing horizon area in extremal limit. S These satisfy Nernst law but A T − → 0 − − − − → 0 means r H − → 0 SUGRA approx valid when R H < R P . S d − 2 horizon topology ⇒ R H ∼ 1 H . r 2 T − → 0 ⇒ R H − − − − → ∞ Small black holes unsuitable for SUGRA analysis. Natural to turn to black branes with Ricci-flat horizons. D. Errington Slide 4 / 42

  7. Holographic Motivation Real Formulation Construction Interpretation Conclusion Why gSUGRA? Without fluxes 4d black objects have S 2 horizon topology. Turn on FI gauging to produce branes i.e. use gSUGRA. c.f. fluxes along internal manifold Electric field D. Errington Slide 5 / 42

  8. Holographic Motivation Real Formulation Construction Interpretation Conclusion Nernst branes in gSUGRA Goal: Systematically construct a family of non-extremal black T − → 0 branes in 4d, N = 2 gSUGRA s.t. s − − − − → 0 i.e. Nernst branes . Why non-extremal? Extremal Nernst branes turn out to not be completely regular suggesting breakdown of effective theory. Find non-extremal solns and study them in near extremal limit to address this. Want completely analytic results for this. Literature has mixture of analytic/numerical. D. Errington Slide 6 / 42

  9. Holographic Motivation Real Formulation Construction Interpretation Conclusion What’s been done? Barisch, Cardoso, Haack, Nampuri, Obers 1108 . 0296 Use 1 st order flow eqns to construct extremal 4d Nernst brane i.e. a black brane with s ( T = 0) = 0. Don’t construct non-extremal branes. Goldstein, Nampuri, V´ eliz-Osorio 1406 . 2937 Obtain extremal Nernst brane in 5d. Provide algorithm to deform extrmal soln into corresponding “hot” (non-extremal) soln. Dempster, DE, Mohaupt 1501 . 07863 Using real formulation of special geometry and dimensional reduction, we make optimal use of EM duality and solve full 2 nd order EoMs to obtain 4d non-extremal solns. Don’t restrict to particular model: class of very special prepotentials. Technique not restricted to models with symmetric target spaces. D. Errington Slide 7 / 42

  10. Holographic Motivation Real Formulation Construction Interpretation Conclusion Gauged SUGRA Consistent duality requires bulk gravity to have well-defined UV completion i.e. embedding in string theory. gSUGRA is LEEFT arising through flux compactifications on K 3 × T 2 or CY 3 . 4d bosonic Lagrangian of n VMs coupled to N = 2 U (1) ⊂ SU (2) R gSUGRA is 4 L 4 = − 1 X J + 1 ν + 1 ν − V ( X , ¯ µ ¯ ν ˜ e − 1 µ X I ∂ ˆ 4 I IJ F I ν F J | ˆ µ ˆ 4 R IJ F I F J | ˆ µ ˆ 2 YR 4 − g IJ ∂ ˆ X ) . µ ˆ ˆ µ ˆ ˆ V ( X , ¯ X ) = ∂ I W ∂ I ¯ W − 2 κ 2 | W | 2 , g I F I − g I X I � � W = 2 . µ = 0 , . . . , 3 , ˆ I , J = 0 , . . . , n , F ( X )hom. deg. 2 . Work on ‘big moduli space’ with X I , I = 0 , . . . , n rather than physical z A , A = 1 , . . . , n . Extra cx d.o.f. compensated for by C ∗ gauge symmetry. # scalars = # gauge fields ⇒ symplectic covariance. D. Errington Slide 8 / 42

  11. Holographic Motivation Real Formulation Construction Interpretation Conclusion Target Manifolds - visualise additional real d.o.f. C ∗ = R > 0 · U (1) X I ¯ ξ = X I ∂ I + ¯ ∂ I X I ¯ J ξ = iX I ∂ I − i ¯ ∂ I conic affine special K¨ ahler, CASK ( X I , N IJ ) φ projective special K¨ ahler, PSK = CASK / C ∗ B ) with z A = X A ( z A , g A ¯ X 0 D. Errington Slide 9 / 42

  12. Holographic Motivation Real Formulation Construction Interpretation Conclusion Gauge Fixing Gauge fix to go from superconformal theory to physical theory. How do we do this? D-gauge fixes dilatations: � X I ¯ � F I − ¯ X I F I = κ − 2 Y = − i ⇒ − 1 2 YR 4 = − 1 2 κ 2 R 4 . X 0 � � U (1) transformations fixed by Im = 0. We postpone this to retain symplectic covariance and work in a U (1) principal bundle instead over PSK base. D. Errington Slide 10 / 42

  13. Holographic Motivation Real Formulation Construction Interpretation Conclusion Real coordinates 1 Story so far has been using complex coords. We use real formulation of special K¨ ahler geometry . [Freed: hep-th/9712042] [Alekseevsky, Cort´ es, Devchand: hep-th/9910091] Already been used to great success for building solns to ungauged SUGRA coupled to VMs [Mohaupt, Vaughan: hep-th/1112 : 2876] [DE,Mohaupt,Vaughan: hep-th/1408.0923] gauged SUGRA coupled to VMs [Klemm,Vaughan: hep-th/1207 . 2679 & hep-th/1211 . 1618] [Gnecchi, Hristov, Klemm, Toldo, Vaughan: hep-th/1311 . 1795] Advantage: Symplectic covariance + tensorial behaviour ⇒ everything transforms linearly. D. Errington Slide 11 / 42

  14. Holographic Motivation Real Formulation Construction Interpretation Conclusion Real coordinates 2 X I = x I + iu I , F I = y I + iv I � T = � T , q a = Re � X I , F I � x I , y I a = 0 , . . . , 2 n + 1. form real coordinate system on CASK (retain C ∗ action over PSK). Legendre transf. − − − − − − − − − → Hesse potential, H ( q a ) Prepotential, F ( X ) Convenient to introduce dual coordinates : F I , − X I � T = 2 v I , − 2 u I � T q a = H a = ∂ H � � ∂ q a = 2Im ∂ 2 H H ab = ∂ q a ∂ q b is real version of N IJ (CASK metric): q a = H ab q b and q a = H ab q b Tensorial behaviour is natural ⇒ simplifies calculations! D. Errington Slide 12 / 42

  15. Holographic Motivation Real Formulation Construction Interpretation Conclusion Dimensional Reduction 1 Seek stationary (actually static) brane solns allows dimensional reduction over timelike S 1 . 4 = − e φ ( dt + V µ dx µ ) 2 + e − φ ds 2 KK ansatz: ds 2 3 with φ, V the KK scalar and vector resp. Identify radial direction of cone with KK scalar. Promote radial direction of cone from gauge d.o.f. to physical d.o.f. by rescaling complex symplectic vector: � T = e φ � T � Y I , F I ( Y ) 2 � X I , F I ( X ) Must redefine real symplectic vector: � T = Re � T (similar for q a ) q a = � x I , y I � Y I , F I ( Y ) X I ¯ F I ( X ) − F I ( X ) ¯ � X I � D-gauge: − i = 1 (with κ = 1) Y I ¯ F I ( Y ) − F I ( Y ) ¯ Y I � = e φ − → − 2 H = − i � D. Errington Slide 13 / 42

  16. Holographic Motivation Real Formulation Construction Interpretation Conclusion Dimensional Reduction 2 At 3d level, we find additional scalars: µ = ξ I dt + ˆ µ ( t , x ) dx ˆ A I � A I µ ( x ) + ξ I V µ ( x ) � dx µ ˆ ⇒ ˆ A I ( t , x ) = ξ I dt + ˜ A I µ ( x ) dx µ ⋆ ⋆ ˜ → ˜ → ˜ A I ← ξ I ← φ V � T � T � T � � � q a = 1 2 ξ I , 1 2 ˜ ∂ µ ξ I , ∂ µ ˜ µ 0 , ˜ F I ˆ ξ I with ξ I = G I | µ 0 There are 4 n + 5 3d scalars U (1) bundle over 4 n + 4 dimensional para-QK mfold. D. Errington Slide 14 / 42

  17. Holographic Motivation Real Formulation Construction Interpretation Conclusion Model Constraints Focus on very special models that can be lifted to 5d. F ( Y ) = f ( Y 1 ,..., Y n ) f hom. deg. 3 and real when Y 0 evaluated on real fields. Also restrict to purely imaginary field config Re ( z A ) = 0 z A = Y A Y 0 = x A + iu A x 0 PI ⇒ x A = 0 and must set y 0 = 0 for consistency. q a = � T PI � T x 0 , x A ; y 0 , y A → q a | PI = x 0 , 0 , . . . , 0; 0 , y 1 , . . . , y n � − � − v 0 , − v A ; u 0 , u A � T PI − v 0 , 0 , . . . , 0; 0 , u 1 , . . . , u n � T ⇒ q a = 1 → q a | PI = 1 � − � H H q a , q a are symplectic vectors. Now only want to allow transformations by Stab( PI ) ⊂ Symp(2 n + 2 , R ) q a and g a = � T . � g I , g I Natural to extend PI to ∂ µ ˆ Greatly simplifies EoMs D. Errington Slide 15 / 42

Recommend


More recommend