ne l eptoquark t o rule them all
play

ne L eptoquark T o Rule Them All Martin Bauer, Matthias Neubert, - PowerPoint PPT Presentation

ne L eptoquark T o Rule Them All Martin Bauer, Matthias Neubert, PRL 116 (2016) 141802 Martin Bauer, Clara Hrner, Matthias Neubert, 16??.????? Effective Field Theories for Collider Physics, Flavor Phenomena and Electroweak Symmetry Breaking


  1. ne L eptoquark T o Rule Them All Martin Bauer, Matthias Neubert, PRL 116 (2016) 141802 Martin Bauer, Clara Hörner, Matthias Neubert, 16??.????? Effective Field Theories for Collider Physics, Flavor Phenomena and Electroweak Symmetry Breaking Eltville 2016

  2. Anomalies in the B sector: R K R K = Γ ( ¯ B → ¯ Kµ + µ − ) Ke + e − ) = 0 . 745 +0 . 090 • − 0 . 074 ± 0 . 036 Γ ( ¯ B → ¯ LHCb, arXiv:1406.6482 hep-ex • Theoretically very 2 . 6 σ clean • Cannot be explained by Form Factors or Charm Contributions!

  3. Anomalies in the B sector: R K LHCb, arXiv:1406.6482 hep-ex 25 25 3 ] ] 10 4 4 c c LHCb (a) LHCb (b) / / 2 2 4 10 [GeV [GeV 20 20 2 3 10 10 2 2 15 15 q q 2 10 10 10 10 10 5 5 0 0 1 1 4800 5000 5200 5400 5600 4800 5000 5200 5400 5600 − + + − + 2 + 2 m ( K ) [MeV/ c ] m ( K e e ) [MeV/ c ] µ µ Number of muon pairs Number of electron pairs 172 +20 − 19 + 20 +16 − 14 + (62 ± 13) 1226 ± 41 Experimentalists:

  4. Anomalies in the B sector: Semileptonic decays b → s transitions • q 2 bin Decay obs. SM pred. measurement pull B 0 → ¯ ¯ K ⇤ 0 µ + µ � F L [2 , 4 . 3] 0 . 81 ± 0 . 02 0 . 26 ± 0 . 19 ATLAS +2 . 9 B 0 → ¯ ¯ K ⇤ 0 µ + µ � [4 , 6] 0 . 74 ± 0 . 04 0 . 61 ± 0 . 06 LHCb +1 . 9 F L B 0 → ¯ ¯ K ⇤ 0 µ + µ � [4 , 6] − 0 . 33 ± 0 . 03 − 0 . 15 ± 0 . 08 LHCb − 2 . 2 S 5 B 0 → ¯ ¯ K ⇤ 0 µ + µ � P 0 [1 . 1 , 6] − 0 . 44 ± 0 . 08 − 0 . 05 ± 0 . 11 LHCb − 2 . 9 5 B 0 → ¯ ¯ K ⇤ 0 µ + µ � P 0 [4 , 6] − 0 . 77 ± 0 . 06 − 0 . 30 ± 0 . 16 LHCb − 2 . 8 5 B � → K ⇤� µ + µ � 10 7 d BR [4 , 6] 0 . 54 ± 0 . 08 0 . 26 ± 0 . 10 LHCb +2 . 1 dq 2 B 0 → ¯ ¯ K 0 µ + µ � 10 8 d BR [0 . 1 , 2] 2 . 71 ± 0 . 50 1 . 26 ± 0 . 56 LHCb +1 . 9 dq 2 B 0 → ¯ ¯ 10 8 d BR K 0 µ + µ � [16 , 23] 0 . 93 ± 0 . 12 0 . 37 ± 0 . 22 CDF +2 . 2 dq 2 10 7 d BR B s → � µ + µ � [1 , 6] 0 . 48 ± 0 . 06 0 . 23 ± 0 . 05 LHCb +3 . 1 dq 2 Altmannshofer, Straub 1503.06199

  5. Anomalies in the B sector | | | H e ff = − 4 G F ↵ e X 2 V tb V ⇤ C i ( µ ) O i ( µ ) , √ ts 4 ⇡ i s � µ P L b ] [¯ s � µ P L b ] [¯ `� µ ` ] , `� µ � 5 ` ] , O 9 = [¯ O 10 = [¯ sP R b ] [¯ sP R b ] [¯ O S = [¯ `` ] , O P = [¯ `� 5 ` ] , Standard Model: t W − b s b s t + γ , Z ν ` + ` + ` − ` − C SM = − C SM 10 = 4 . 2 ⇒ 9

  6. Anomalies in the B sector Vector currents b µ Z 0 R K : � � � � 9 + C 0 e 10 − C 0 e 0 . 7 . Re[ ] . 1 . 5 C e 9 − C e e → µ − 10 µ s Scalar currents b µ H, A S | 2 + | C e R K : 15 . | C e S + C 0 e P + C 0 e P | 2 − ( e → µ ) . 34 µ s Constraints from B ( ¯ B s → ` + ` � ) � 2 + � 2 � 1 − 0 . 24( C NP � � � � 10 − C 0 10 ) − y ` ( C P − C 0 � y ` ( C S − C 0 y µ = 7 . 7 , y e = 1600 B s → ` + ` � ) SM = P ) S ) B ( ¯ B ( ¯ B s → ee ) exp P | 2 . 1 . 3 S | 2 + | C e | C e S − C 0 e P − C 0 e B s → ee ) SM < 3 . 3 · 10 6 , B ( ¯ B ( ¯ B s → µµ ) exp 10 − C 0 µ 0 . Re[ C µ 10 ] . 1 . 9 B s → µµ ) SM = 0 . 79 ± 0 . 20 . B ( ¯

  7. Anomalies in the B sector B + → K + µ + µ − B s → µ + µ − Becirevic et al. 1608.07583 More details: Tobias and Fulvias talks

  8. Anomalies in the B sector B + → K + µ + µ − B s → µ + µ − Becirevic et al. 1608.07583 DHMV , 1510 . 04239 Coefficient Best fit 1 σ 3 σ Pull SM C NP − 0 . 02 [ − 0 . 04 , − 0 . 00] [ − 0 . 07 , 0 . 04] 1.1 7 C NP [ − 1 . 32 , − 0 . 89] [ − 1 . 71 , − 0 . 40] 4.5 − 1 . 11 9 C NP 0 . 58 [0 . 34 , 0 . 84] [ − 0 . 11 , 1 . 41] 2.5 10 C NP 0 . 02 [ − 0 . 01 , 0 . 04] [ − 0 . 05 , 0 . 09] 0.7 7 0 C NP 0 . 49 [0 . 21 , 0 . 77] [ − 0 . 33 , 1 . 35] 1.8 9 0 C NP − 0 . 27 [ − 0 . 46 , − 0 . 08] [ − 0 . 84 , 0 . 28] 1.4 10 0 C NP = C NP − 0 . 21 [ − 0 . 40 , 0 . 00] [ − 0 . 74 , 0 . 55] 1.0 9 10 C NP = − C NP [ − 0 . 88 , − 0 . 51] [ − 1 . 27 , − 0 . 18] 4.1 − 0 . 69 9 10 Cancels in RK C NP = − C NP Much more fits : Tobias Hurths talk [ − 1 . 28 , − 0 . 88] [ − 1 . 62 , − 0 . 42] 4.8 − 1 . 09 9 9 0

  9. Anomalies in the B sector Need ◆ − 1 ✓ 2 V tb V ∗ 1 = 1 α e ts C NP 9 / 10 ≈ C SM 10 / 4 ⇒ M 2 v 2 4 π 4 M ≈ 35 TeV ⇒ DHMV , 1510 . 04239 Coefficient Best fit 1 σ 3 σ Pull SM C NP − 0 . 02 [ − 0 . 04 , − 0 . 00] [ − 0 . 07 , 0 . 04] 1.1 7 C NP [ − 1 . 32 , − 0 . 89] [ − 1 . 71 , − 0 . 40] 4.5 − 1 . 11 9 C NP 0 . 58 [0 . 34 , 0 . 84] [ − 0 . 11 , 1 . 41] 2.5 10 C NP 0 . 02 [ − 0 . 01 , 0 . 04] [ − 0 . 05 , 0 . 09] 0.7 7 0 C NP 0 . 49 [0 . 21 , 0 . 77] [ − 0 . 33 , 1 . 35] 1.8 9 0 C NP − 0 . 27 [ − 0 . 46 , − 0 . 08] [ − 0 . 84 , 0 . 28] 1.4 10 0 C NP = C NP − 0 . 21 [ − 0 . 40 , 0 . 00] [ − 0 . 74 , 0 . 55] 1.0 9 10 C NP = − C NP [ − 0 . 88 , − 0 . 51] [ − 1 . 27 , − 0 . 18] 4.1 − 0 . 69 9 10 C NP = − C NP Much more fits : Tobias Hurths talk [ − 1 . 28 , − 0 . 88] [ − 1 . 62 , − 0 . 42] 4.8 − 1 . 09 9 9 0

  10. T wo Main Candidates b µ C 9 : Vector Currents Z 0 Gauld, Goetz, Haisch, 1310.1082 Altmannshofer, Gori, Pospelov, Yavin, 1403.1269 µ s Crivellin, D’Ambrosio, Heeck 1501.00993 many more! C 9 = − C 10 : Leptoquarks b µ (3 , 3) − 1 / 3 (3 , 2) 1 / 6 Hiller, Schmaltz 1408.1627 φ Becirevic et al. 1608.08501 µ s (3 , 3) 2 / 3 Fajfer, Kosnik 1511.06024

  11. R ( D ( ∗ ) ) Anomalies in the B sector: ¯ B → D ( ∗ ) ⌧ ¯ ⌫ • Combined • R ( D ( ∗ ) ) = ¯ B → D ( ∗ ) ` ¯ ⌫ Significance: 4 σ • Belle II is expected to improve exp. HFAG EPS 2015 error by factor ~5 ! 0.5 R(D*) BaBar, PRL109,101802(2012) 2 = 1.0 ∆ χ Belle, PRD92,072014(2015) 0.45 LHCb, PRL115,111803(2015) Belle, arXiv:1603.06711 2 HFAG Average, P( ) = 67% χ 0.4 SM prediction 0.35 0.3 0.25 HFAG R(D), PRD92,054510(2015) R(D*), PRD85,094025(2012) Prel. Winter 2016 0.2 0.2 0.3 0.4 0.5 0.6 R(D) Experimentalists:

  12. Anomalies in the B sector: R ( D ( ∗ ) ) ¯ B → D ( ∗ ) ⌧ ¯ ⌫ • Combined • R ( D ( ∗ ) ) = ¯ B → D ( ∗ ) ` ¯ ⌫ Significance: 4 σ • Belle II is expected to improve exp. HFAG EPS 2015 error by factor ~5 ! 0.5 R(D*) BaBar, PRL109,101802(2012) 2 = 1.0 ∆ χ Belle, PRD92,072014(2015) 0.45 LHCb, PRL115,111803(2015) Belle, arXiv:1603.06711 2 HFAG Average, P( ) = 67% χ 0.4 SM prediction 0.35 0.3 0.25 HFAG R(D), PRD92,054510(2015) R(D*), PRD85,094025(2012) Prel. Winter 2016 0.2 0.2 0.3 0.4 0.5 0.6 R(D) Experimentalists:

  13. Anomalies in the B sector: R ( D ( ∗ ) ) Measurement SM Prediction ¯ ( B → D ( ∗ ) ⌧ ¯ ⌫ 0 . 300 ± 0 . 010 , D 0 . 388 ± 0 . 047 , D R ( D ( ∗ ) ) = = ¯ B → D ( ∗ ) ` ¯ ⌫ D ∗ 0 . 321 ± 0 . 021 , D ∗ 0 . 252 ± 0 . 005 , SM contribution is tree-level… b V cb g 2 c …and we want a 10-20% shift ∝ W − M 2 ¯ ν W ` − Needs a large new physics contribution: ⇣ v ⌘ 2 1 = 1 C NP ≈ C SM / 10 ⇒ M = 1 − 2 TeV ⇒ V cb M 10

  14. Anomalies in the B sector: R ( D ( ∗ ) ) H = 4 G F 2 V cb O V L + 1 C ( 0 , 00 ) O ( 0 , 00 ) • Using X Freytsis et al. , 1506.08896 √ i i Λ 2 i ¢ v C V L ≤ v C S L ¢ ≤ C S R v C S L C V R C S R 2 6 1 s , 2 s , 3 s 1 s , 2 s , 3 s 1 s , 2 s , 3 s 6 1 4 4 0 2 2 C V L C S L C S L - 1 ≤ 0 ¢ 0 - 2 - 2 - 2 - 3 - 4 - 4 L = 1 TeV L = 1 TeV L = 1 TeV - 4 - 6 - 2 - 1 0 1 2 - 8 - 6 - 4 - 2 0 2 - 8 - 6 - 4 - 2 0 2 4 ¢ ≤ C V R C S R C S R 00 τ P L c c )(¯ b c P L ν ) c γ µ P L ν ) O S L = (¯ cP L b )(¯ τ P L ν ) O 0 S L = (¯ V L = (¯ τγ µ P L b )(¯ O c γ µ P L ν ) 00 τ P R c c )(¯ O 0 b c P L ν ) V R = (¯ τγ µ P R b )(¯ O S R = (¯ cP R b )(¯ τ P L ν ) S R = (¯ O New Leptoquark New H + New W 0

  15. Anomalies in the B sector: R ( D ( ∗ ) ) H = 4 G F 2 V cb O V L + 1 C ( 0 , 00 ) O ( 0 , 00 ) • Using X Freytsis et al. , 1506.08896 √ i i Λ 2 i C S R v C S L 1 s , 2 s , 3 s 6 b c 4 H + 2 C S L ¯ ν 0 ` − - 2 - 4 L = 1 TeV √ 2 G F C S R = − 2 - 8 - 6 - 4 - 2 0 2 4 V cb m b m τ tan β 2 C S R M 2 H + √ O S L = (¯ cP L b )(¯ τ P L ν ) 2 G F C S L = − 2 1 V cb m c m τ M 2 tan β 2 O S R = (¯ cP R b )(¯ τ P L ν ) H + New H + Hard to get two sizable coefficients

  16. Anomalies in the B sector: R ( D ( ∗ ) ) H = 4 G F 2 V cb O V L + 1 C ( 0 , 00 ) O ( 0 , 00 ) • Using X Freytsis et al. , 1506.08896 √ i i Λ 2 i ¢ v C V L ¢ C S R v C S L C V R 2 1 s , 2 s , 3 s 1 s , 2 s , 3 s Enhanced SM 6 1 operator gives a 4 good fit 0 2 C V L C S L - 1 ✓ TeV ¢ C ◆ 2 0 0 . 2 ≈ g 2 | V cb | 2 - 2 M W 0 - 2 - 3 - 4 L = 1 TeV L = 1 TeV - 4 but - 2 - 1 0 1 2 - 8 - 6 - 4 - 2 0 2 4 ¢ C V R C S R c γ µ P L ν ) O S L = (¯ cP L b )(¯ τ P L ν ) O 0 V L = (¯ τγ µ P L b )(¯ M W 0 > 1 . 8 TeV c γ µ P L ν ) O 0 V R = (¯ τγ µ P R b )(¯ O S R = (¯ cP R b )(¯ τ P L ν ) from LHC searches New H + New W 0

Recommend


More recommend