Nanodomain states of strontium ferrites and their structural transformations Uliana Ancharova (ISSCM SB RAS) Zakhar Vinokurov (BIC SB RAS) Svetlana Cherepanova (BIC SB RAS) Synchrotron and Free electron laser Radiation: generation and application July 06 2016
2 Strongly-non-stoichiometric perovskite-like oxides SrFeO 3- δ SrFe 1 − y V y O 2.5+ x SrFe 0.96 V 0.04 O 2.54 SrFe 0.99 V 0.01 O 2.51 SR, λ = 1.54Å Sr(Fe 1- y V y )O 2.5+ x Sr(Fe 1- y Mo y )O 2.5+ x Sr(Co 0.8 Fe 0.2 )O 2.64 (Sr 0.7 La 0.3 )(Co 0.5 Al 0.3 Fe 0.2 )O 2.54 Sr(Co 0.75 Nb 0.05 Fe 0.2 )O 2.45 Sr(Co 0.7 Nb 0.1 Fe 0.2 )O 2.47
3 Strongly-non-stoichiometric perovskite-like oxides SrFeO 3- δ SrFe 0.95 Mo 0.05 O 2.5+ x SrFe 0.92 Mo 0.8 O 2.5+ x [Lindberg F. et. al. // J. Solid State Chem. 2004. 177. 1592] Sr 2 Co 2 −x Al x O 5 [Doorn R. H. E. et. al. // Solid State Ionics. 2000. 128. 65] La 1 −x Sr x CoO 3 −δ [Liu Y. et al. // J. Solid State Chem. 2003. 170. 247] (Ba 1 −x La x ) 2 In 2 O 5+x [Nakayama N. et al. // J. Solid State Chem. 1987. 71. 403] SrFe 1 −x V x O 2.5+x [Alario-Franco M.A. et al. // Materials Res. Bull. 1982. 17. 733] Sr x Nd 1-x FeO 3-y [D’Hondt H. et al. // J. Solid State Chem. 2009. 182. 356] Sr 2 Al 0.78 Mn 1.22 O 5.2
4 Nano-domain state at low p O 2 improves mechanical stability of membranes Arrenius plots for oxygen ion conductivity “order-disorder” phase transition: abrupt change in lattice volume SrFe 1 − y Mo 6+ y O 2.5+ x orthorhombic cubic y =0.05 orthorhombic cubic y =0.1 y =0 Sr(Co 0.8 Fe 0.2 )O 3- δ SrFeO 3- δ [Markov A. et al // Solid State Ionics. 2008. 179. 1050.] [McIntosh S. et al // Solid State Ionics. 2006. 177. 833.] SrFe 1 − y W 6+ y O 2.5+ x [Schmidt M. et al // J. Solid State Chem. 2001. 156. 292.] y =0.1 cracks [Pei S. et al // Catalysis Letters. 1995. 30. 201.] y =0 Doping with high-charged cations leads to the y =0.2 formation of the system outside the homogeneity region of brownmillerite structure [Markov A. et al. // Solid State Ionics. 2008. 179. 99.]
5 Structure investigations To find correlations between configuration of nanodomain structure in strongly non-stoichiometric oxygen deficient oxides based in strontium ferrite SrFeO 3- δ and accompanying them specific diffraction effects + ● cation composition ● oxygen composition ● temperature ● different type of disordering ● diffraction effects of nanostructuring [Takeda Y. et al. // J. Solid State Chem. 1986. 63. 237.]
6 Weakly oxygen deficient SrFeO 3- δ λ =0.369Å SrFe 1- x V x O 3- δ Slow cooling at air 3- δ ≈ 2.8-2.9 Substitution with high charged cations: at normal conditions pO 2 cubic perovskite structure remains SrFe 1- x Mo x O 3- δ λ =0.369Å Lattice parameter V Mo
7 Strongly oxygen deficient SrFeO 3- δ λ =0.369Å SrFe 1- x V x O 3- δ Quenching in vacuum 3- δ ≈ 2.5-2.7 Substitution with high charged < ε > ≈ 0.3% cations: < ε > ≈ 0.4% during quenching at low p O 2 cubic < ε > ≈ 0.7% perovskite structure is not preserved < ε > ≈ 1.0% < ε > ≈ 0.5% λ =0.369Å SrFe 1- x Mo x O 3- δ < ε > ≈ 0.3% < ε > ≈ 0.2% < ε > ≈ 0.4% Lattice parameters < ε > ≈ 0.5% < ε > ≈ 0.8% < ε > ≈ 1.2% V < ε > ≈ 1.0% < ε > ≈ 0.6% Mo < ε > ≈ 0.2%
8 Strongly oxygen deficient SrFeO 3- δ SrFe 1- x M x O 3- δ V Mo Lattice parameters Microdeformations (141) BM =(110) Per The reduced length of the unit cell along (141) BM + plane l = 2 2 (( b / 4) ( d / 2) ) / 2 almost does not BM BM change, which means that twinning direction is the least stressful in bd plane.
9 Strongly oxygen deficient SrFeO 3- δ 2D- diffraction I (2 θ , χ ) χ 1D SrFe 0.97 Mo 0.03 O 3- δ nanodomain twinned < ε > ≈ 0.5-1% 3D SrFe 0.95 Mo 0.05 O 3- δ nanodomain stressed < ε > ≈ 0.7-1.2% SrFe 0.92 Mo 0.08 O 3- δ cluster not stressed < ε > ≈ 0.3-0.4% 2 θ
10 Strongly oxygen deficient SrFeO 3- δ Nanodomain states according to HRTEM ( M =V,Mo) SrFe 1- y M y O 2.5+ x D L 0 ≤ y ≤ 0.03 0.04 ≤ y ≤ 0.1 <L> min =<D> max ≈ 20-40nm; <D> min ≈ 2-5nm
11 Nanodomain states Of strongly oxygen-deficient SrFeO 3- δ depending on substitution degree of high-charged cations states: ( M =V,Mo) SrFe 1- y M y O 2.5+ x b 1 monodomain Increase in degree of disordering b 1D (0 ≤ y ≤ 0.03) in the system b nanodomain 2 twinned b 3D (0.04 ≤ y ≤ 0.05) b nanodomain 3 b stressed y ac b b cluster 12 (0.06 ≤ y ≤ 0.1) + b not stressed (6) ac b according to defect structure XRD simulation b
12 Structure changes at heating to high temperatures Phase transitions of vacancy-ordered phases [Takeda Y. et al. // J. Solid State SrFeO 3- δ Chem. - 1986. - 63. - P.237] 3 SrFeO 3- δ 2 1 O ПОП ’ O ТОТ ’ О O ПООП ’ AB O 2.875 AB O 2.75 AB O 2.5 1 2 3 AB O 3- δ AB O 3- δ AB O 3- δ 2 3
13 Structure changes at heating to high temperatures Evolution of superstructural reflections SrCo 0.8 Fe 0.2 O 2.5+ x x ≈ 0.14 + AB O 3- δ AB O 2.5 3 λ = 0.369Å
14 Structure changes at heating to high temperatures Nanodomain states of orthoperovskite SrFeO 2.75+ x x ≈ 0.07 a b c ≠ ≠ ≠ a ; a ; a per per per 2 2 2 2 2 orthoperovskite perovskite AB O 3- δ 2 AB O 2.75 O ПОП ’ λ = 0.369Å
15 Domain structure of orthoperovskite Influence on XRD SrFeO 2.82 a = 3 . 8708 2 2 b = 3 . 8436 2 AB O 3 c superstructure = 3 . 8593 2 (AB O 2.75 ) 0.017º * λ = 0.369Å ● Widths of superstructural reflections are higher then for main ● Forms of peaks are symmetrical in despite of λ = 0.369Å low symmetry of orthoperovskite
16 Domain structure of orthoperovskite at HRTEM SrFeO 2.82 obtained by slow cooling in air 1 2 3 20nm
17 Structure changes at heating to high temperatures In situ XRD investigations of quenching SrFeO 3- δ in oxygen-deficient atmosphere 95%N 2 5%O 2 • • λ = 1.021Å 99%N 2 1%O 2 [Mizusaki J. et al. // J. Solid State Chem. 1992. 99. 166.]
18 Thank you very much for your attention!
Recommend
More recommend