n 3
play

N 3 PDF Machine Learning PDFs QCD Introduction NISQ era We are - PowerPoint PPT Presentation

Towards Quantum Machine Learning Stefano Carrazza 19th October 2020, QTI TH meeting, CERN. Universit` a degli Studi di Milano, INFN Milan, CERN, TII N 3 PDF Machine Learning PDFs QCD Introduction NISQ era We are in a Noisy


  1. Towards Quantum Machine Learning Stefano Carrazza 19th October 2020, QTI TH meeting, CERN. Universit` a degli Studi di Milano, INFN Milan, CERN, TII N 3 PDF Machine Learning • PDFs • QCD

  2. Introduction

  3. NISQ era ⇒ We are in a Noisy Intermediate-Scale Quantum era ⇐ How can we contribute? • Develop new algorithms ⇒ using classical simulation of quantum algorithms • Adapt problems and strategies for current hardware ⇒ hybrid classical-quantum computation 1

  4. Quantum Algorithms There are three families of algorithms: Gate Circuits Variational (AI inspired) • Search (Grover) • Autoencoders • QFT (Shor) • Eigensolvers • Classifiers • Deutsch Annealing • Direct Annealing • Adiabatic Evolution • QAOA 2

  5. Variational Quantum Circuits Getting inspiration from AI : • Supervised Learning ⇒ Regression and classification • Unsupervised Learning ⇒ Generative models, autoencoders • Reinforcement Learning ⇒ Quantum RL / Q-learning 3

  6. Variational Quantum Circuits Getting inspiration from AI : • Supervised Learning ⇒ Regression and classification • Unsupervised Learning ⇒ Generative models, autoencoders • Reinforcement Learning ⇒ Quantum RL / Q-learning Define new parametric model architectures for quantum hardware: ⇒ Variational Quantum Circuits 3

  7. Rational

  8. Rational for Variational Quantum Circuits Rational: Deliver variational quantum states → explore a large Hilbert space. U ( � α ) = U n . . . U 2 U 1 Near optimal solution U 3 U 1 U 4 U 2 4

  9. Rational for Variational Quantum Circuits Rational: Deliver variational quantum states → explore a large Hilbert space. U ( � α ) = U n . . . U 2 U 1 Near optimal solution U 3 U 1 U 4 U 2 Idea: Quantum Computer is a machine that generates variational states. ⇒ Variational Quantum Computer! 4

  10. Solovay-Kitaev Theorem Let { U i } be a dense set of unitaries. Optimal solution Define a circuit approximation to V : | U k . . . U 2 U 1 − V | < δ Scaling to best approximation � log c 1 � k ∼ O δ where c < 4 . ⇒ The approximation is efficient and requires a finite number of gates. 5

  11. Many unexplored options Add data in the course of computation? 6

  12. Example 1: VQE

  13. Variational Quantum Eigensolvers (VQE) Aspuru-Guzik et al., IBM, Zapata, Blatt. VQE is hybrid classical-quantum algorithm. 1. Define an optimization problem, e.g. energy, correlations, etc. 2. Apply ”machine learning“ on circuit design. 7

  14. Variational Quantum Eigensolvers (VQE) First successful applications in quantum chemistry: 8

  15. Example 2: Quantum Classifier

  16. Data re-uploading strategy P´ erez-Salinas et al. [arXiv:1907.02085] Encode data directly “inside” circuit parameters: 9

  17. Data re-uploading strategy 10

  18. Data re-uploading strategy 11

  19. Example 3: ML to Quantum

  20. VQE with reinforcement learning A. Garcia-Saez, J. Riu [arXiv:1911.09682], Google [arXiv:2003:02989] Strategies: • Use Reinforcement Learning to tune VQE circuits. • Use DL for variational circuit tune and data pre-post processing. 12

  21. Code tutorials

  22. Qibo applications and tutorial • VQE-like examples: • Scaling of VQE for condensed matter systems • Variational Quantum Classifier • Data reuploading for a universal quantum classifier • Quantum autoencoder for data compression • Measuring the tangle of three-qubit states • Quantum autoencoders with enhanced data encoding ( New! ) See: https://qibo.readthedocs.io/en/latest/applications.html 13

  23. Thank you for your attention. 13

Recommend


More recommend