Multivariate COM-Poisson: A Flexible Count Distribution that Accommodates Data Dispersion Yixuan (Sherry) Wu Georgetown University Mentor: Prof. Kimberly Sellers
COM-Poisson Multivariate (CMP): Discussion CMP Introduction Background Analysis R Shiny
Background & Motivation Available Count Models: β’ Poisson Distribution β’ PMF for random variable Y: P ( Y = y ) = π π§ π βπ , π§ = 0, 1, 2, β― π§! β’ Assumption: y β’ Ξ» = mean = variance β equi-dispersion https://en.wikipedia.org/wiki/Poisson_d istribution#/media/File:Poisson_pmf.svg β’ Multivariate analog of this distribution exists Background Analysis R Shiny
Background & Motivation Available Count Models: β’ Negative Binomial Distribution β’ Accounts for over-dispersion, but not under-dispersion β’ Generalized Poisson Distribution β’ Not good when huge amount of under-dispersion Background Analysis R Shiny
Background & Motivation Available Count Models: β’ Negative Binomial Distribution β’ Accounts for over-dispersion, but not under-dispersion β’ Generalized Poisson Distribution β’ Not good when huge amount of under-dispersion Challenges: 1. Accounting for under-dispersion 2. Uncertain Dispersion Background Analysis R Shiny
COM-Poisson Distribution (Conway & Maxwell, 1962; Shmueli et al., 2005) COM-Poisson distribution PMF for random variable Y: π π§ π π = π§ = π§! π π(π,π) , π§ = 0, 1, 2, β― β π π (π!) π ; π β₯ 0; π = πΉ(π π ) where π π, π = ΰ· π=0 Captures both over-dispersion and under-dispersion Background Analysis R Shiny
COM-Poisson Distribution (Conway & Maxwell, 1962; Shmueli et al., 2005) COM-Poisson distribution PMF for random variable Y: π π§ π π = π§ = π§! π π(π,π) , π§ = 0, 1, 2, β― β π π (π!) π ; π β₯ 0; π = πΉ(π π ) where π π, π = ΰ· π=0 Special Cases: π π§ π βπ β π π, π = π π β π = 1 π π = π§ = βΌ ππππ‘π‘ππ π π§! 1 π π = π§ = π π§ (1 β π) βΌ π»πππππ’π ππ (π = 1 β π) π = 0, π < 1 β π π, π = β 1βπ π π β π π, π = 1 + π β π β β π π = π§ = 1+π βΌ πΆππ πππ£πππ (π = 1+π ) Background Analysis R Shiny
COM-Poisson Distribution Properties Probability Generating Function (PGF): π ππ’, π Ξ π’ β = πΉ π’ π = π π, π Moment Generating Function (MGF): π ππ π’ , π π π π’ β = πΉ e tY = π(π, π) Expected Value: π log π(π,π) E π = π ππ Variance: ππΉ(π) Var π = π log π Background Analysis R Shiny
Multivariate COM-Poisson Distribution Let π βΌ CMP(π, π) and (π 1 , β― , π π |π) have conditional PGF Background Analysis R Shiny
Multivariate COM-Poisson Distribution Let π βΌ CMP(π, π) and (π 1 , β― , π π |π) have conditional PGF Using compounding technique, unconditional PGF: Background Analysis R Shiny
Tri-variate Case β’ Probability Generating Function: Background Analysis R Shiny
Next Step & Challenges β’ The current challenge with computing PMF: β’ Tri-variate PMF β Computational Challenge to estimate parameters β Questions? Background Analysis R Shiny
Trivariate Case - PGF d_3 d_1 d_2 Background Analysis R Shiny
Compounding Method: For Derivation of Multivariate Poisson Distribution Let π βΌ Poisson(π) and (π 1 , β― , π π |π) have conditional PGF Background Analysis R Shiny
Compounding Method: For Derivation of Multivariate Poisson Distribution Let π βΌ Poisson(π) and (π 1 , β― , π π |π) have conditional PGF Background Analysis R Shiny
Compounding Method: For Derivation of Multivariate Poisson Distribution Let π βΌ Poisson(π) and (π 1 , β― , π π |π) have conditional PGF Using compounding technique, unconditional PGF: Background Analysis R Shiny
Recommend
More recommend