multivariate com poisson
play

Multivariate COM-Poisson: A Flexible Count Distribution that - PowerPoint PPT Presentation

Multivariate COM-Poisson: A Flexible Count Distribution that Accommodates Data Dispersion Yixuan (Sherry) Wu Georgetown University Mentor: Prof. Kimberly Sellers COM-Poisson Multivariate (CMP): Discussion CMP Introduction Background


  1. Multivariate COM-Poisson: A Flexible Count Distribution that Accommodates Data Dispersion Yixuan (Sherry) Wu Georgetown University Mentor: Prof. Kimberly Sellers

  2. COM-Poisson Multivariate (CMP): Discussion CMP Introduction Background Analysis R Shiny

  3. Background & Motivation Available Count Models: β€’ Poisson Distribution β€’ PMF for random variable Y: P ( Y = y ) = πœ‡ 𝑧 𝑓 βˆ’πœ‡ , 𝑧 = 0, 1, 2, β‹― 𝑧! β€’ Assumption: y β€’ Ξ» = mean = variance β†’ equi-dispersion https://en.wikipedia.org/wiki/Poisson_d istribution#/media/File:Poisson_pmf.svg β€’ Multivariate analog of this distribution exists Background Analysis R Shiny

  4. Background & Motivation Available Count Models: β€’ Negative Binomial Distribution β€’ Accounts for over-dispersion, but not under-dispersion β€’ Generalized Poisson Distribution β€’ Not good when huge amount of under-dispersion Background Analysis R Shiny

  5. Background & Motivation Available Count Models: β€’ Negative Binomial Distribution β€’ Accounts for over-dispersion, but not under-dispersion β€’ Generalized Poisson Distribution β€’ Not good when huge amount of under-dispersion Challenges: 1. Accounting for under-dispersion 2. Uncertain Dispersion Background Analysis R Shiny

  6. COM-Poisson Distribution (Conway & Maxwell, 1962; Shmueli et al., 2005) COM-Poisson distribution PMF for random variable Y: πœ‡ 𝑧 𝑄 𝑍 = 𝑧 = 𝑧! πœ‰ π‘Ž(πœ‡,πœ‰) , 𝑧 = 0, 1, 2, β‹― ∞ πœ‡ π‘˜ (π‘˜!) πœ‰ ; πœ‰ β‰₯ 0; πœ‡ = 𝐹(𝑍 πœ‰ ) where π‘Ž πœ‡, πœ‰ = ෍ π‘˜=0 Captures both over-dispersion and under-dispersion Background Analysis R Shiny

  7. COM-Poisson Distribution (Conway & Maxwell, 1962; Shmueli et al., 2005) COM-Poisson distribution PMF for random variable Y: πœ‡ 𝑧 𝑄 𝑍 = 𝑧 = 𝑧! πœ‰ π‘Ž(πœ‡,πœ‰) , 𝑧 = 0, 1, 2, β‹― ∞ πœ‡ π‘˜ (π‘˜!) πœ‰ ; πœ‰ β‰₯ 0; πœ‡ = 𝐹(𝑍 πœ‰ ) where π‘Ž πœ‡, πœ‰ = ෍ π‘˜=0 Special Cases: πœ‡ 𝑧 𝑓 βˆ’πœ‡ βž” π‘Ž πœ‡, πœ‰ = 𝑓 πœ‡ βž” πœ‰ = 1 𝑄 𝑍 = 𝑧 = ∼ π‘„π‘π‘—π‘‘π‘‘π‘π‘œ πœ‡ 𝑧! 1 𝑄 𝑍 = 𝑧 = πœ‡ 𝑧 (1 βˆ’ πœ‡) ∼ 𝐻𝑓𝑝𝑛𝑓𝑒𝑠𝑗𝑑 (π‘ž = 1 βˆ’ πœ‡) πœ‰ = 0, πœ‡ < 1 βž” π‘Ž πœ‡, πœ‰ = βž” 1βˆ’πœ‡ πœ‡ πœ‡ βž” π‘Ž πœ‡, πœ‰ = 1 + πœ‡ βž” πœ‰ β†’ ∞ 𝑄 𝑍 = 𝑧 = 1+πœ‡ ∼ πΆπ‘“π‘ π‘œπ‘π‘£π‘šπ‘šπ‘— (π‘ž = 1+πœ‡ ) Background Analysis R Shiny

  8. COM-Poisson Distribution Properties Probability Generating Function (PGF): π‘Ž πœ‡π‘’, πœ‰ Ξ  𝑒 βˆ— = 𝐹 𝑒 𝑍 = π‘Ž πœ‡, πœ‰ Moment Generating Function (MGF): π‘Ž πœ‡π‘“ 𝑒 , πœ‰ 𝑁 𝑍 𝑒 βˆ— = 𝐹 e tY = π‘Ž(πœ‡, πœ‰) Expected Value: πœ– log π‘Ž(πœ‡,πœ‰) E 𝑍 = πœ‡ πœ–πœ‡ Variance: πœ–πΉ(𝑍) Var 𝑍 = πœ– log πœ‡ Background Analysis R Shiny

  9. Multivariate COM-Poisson Distribution Let π‘œ ∼ CMP(πœ‡, πœ‰) and (π‘Œ 1 , β‹― , π‘Œ 𝑙 |π‘œ) have conditional PGF Background Analysis R Shiny

  10. Multivariate COM-Poisson Distribution Let π‘œ ∼ CMP(πœ‡, πœ‰) and (π‘Œ 1 , β‹― , π‘Œ 𝑙 |π‘œ) have conditional PGF Using compounding technique, unconditional PGF: Background Analysis R Shiny

  11. Tri-variate Case β€’ Probability Generating Function: Background Analysis R Shiny

  12. Next Step & Challenges β€’ The current challenge with computing PMF: β€’ Tri-variate PMF β†’ Computational Challenge to estimate parameters β†’ Questions? Background Analysis R Shiny

  13. Trivariate Case - PGF d_3 d_1 d_2 Background Analysis R Shiny

  14. Compounding Method: For Derivation of Multivariate Poisson Distribution Let π‘œ ∼ Poisson(πœ‡) and (π‘Œ 1 , β‹― , π‘Œ 𝑙 |π‘œ) have conditional PGF Background Analysis R Shiny

  15. Compounding Method: For Derivation of Multivariate Poisson Distribution Let π‘œ ∼ Poisson(πœ‡) and (π‘Œ 1 , β‹― , π‘Œ 𝑙 |π‘œ) have conditional PGF Background Analysis R Shiny

  16. Compounding Method: For Derivation of Multivariate Poisson Distribution Let π‘œ ∼ Poisson(πœ‡) and (π‘Œ 1 , β‹― , π‘Œ 𝑙 |π‘œ) have conditional PGF Using compounding technique, unconditional PGF: Background Analysis R Shiny

Recommend


More recommend