Multi- scale Manufacturing at Kim’s Group Things Natural Tunable RF Energy Nanopipette Photonics 1 cm 10 -2 m Switch Harvesting 10 mm 1,000,000 nanometers = 10 -3 m 1 millimeter (mm) air Microwave substrate 0.1 mm 10 -4 m 100 µ m Microworld Human hair ~ 10-50 µ m wide The 0.01 mm 10 -5 m 10 µ m Infrared + - + - E 3 + - + red blood cell 1,000 nanometers = ~5 µ m 10 -6 m 1 micrometer ( µ m) Visible bacteria 0.1 µ m 1 µ m 10 -7 m 100 nm Ultraviolet Nanoworld The 0.01 µ m 10 -8 m a d 10 nm DNA PMMA on Si proteins nm 10 -9 m 1 nanometer (nm) Things Engineered Soft x-ray Molecule, at Kim’s Lab. Atoms 10 -10 m 0.1 nm S.G. KIM, MIT
Energy Harvesting from Environmental Vibrations � Piezoelectric MEMS power generator, d 33 mode � Monolithic MEMS devices • 3V peak, 20 µ W/ mm 2 • Comparable to Li/ LiCoO 2 battery � Large-scale Autonomous Wireless Sensor Network • Remote sensing of man-made and natural infrastructures • Structural health monitoring (Plants, Planes) • Smart bearings for machine diagnostics RF transm itter + Inter-digitated Electrode PMPG + - + - + - + + PZT Sensor E 3 ZrO 2 membrane R. Sood, et al., Hilton Head Conference 2004 S.G. KIM, MIT
Self- cleaning MEMS switch for 10 11 cycles � 100 billion cycle direct contact switch � Micro-undulated self-cleaning contact � Lateral Au wall by molded electroplating � Large strain PZT microactuator � Monolithic MEMS devices • Maintain 0.1 Ω for 1 billion cycles and on • low insertion loss, high isolation, low voltage � Low cost RF switches • GSM cell phones • High power military RF switches Large strain PZT Grooved surface Ω Y. Shi, et al., IEEE MEMS 2005, Miamit, Fl, January N. Conway, et al., IEEE MEMS 2004, Maastricht, 2005 Netherlands, January 2004 S.G. KIM, MIT
Tunable Photonic Crystals � Strain tuning of microphotonic devices � Monolithic MEMS devices Electrostatic Actuation 1 Piezoelectric Actuation 2 � Tunable Gratings 1,2 � Tunable Microcavity Resonator 3 � Smart communication devices for all-optical systems Tunable Photonic Bandgap 3 Si waveguide 1D photonic crystal microcavity 1 Normalized transmission 0.8 0.6 band gap band gap 0.4 0.2 1. Information Sciences , 149, pp. 31-40, 2003 air 2 . Applied Optics , Vol. 42, No. 4, 2003 0 substrate 1430 1470 1510 1550 1590 3. Appl. Phys. Lett. , V.84,2004 wavelength (nm) SiO 2 deformable integrated tri -layer membrane piezoelectric microactuator S.G. KIM, MIT
Transplanting Carbon Nanotubes Nanostructure assembly, a mechanical way Nanolelleting 1 Applications � Micro-blocks or cylinders with • Massive Parallel Nanoprobe nanotubes embedded Array � Basic building blocks for • Nanopipette nano-assembly and • Nanotip Cell Manipulation transplantation • Ultra tough composites 1 T. El-Aguizy, et al., Applied Physics Letters, Vol. 85, No. 25, P.5995, 2004 Self-assembly or transplanting CMPed and Transplanted CNT bundle nanopellets S.G. KIM, MIT
MIT PECVD CNT machine � Controlled Temp. over whole substrate (4” φ ) - 700~ 1200 o C Temp. measurement & feedback � Required Gas Heated Substrate - C 2 H 2, CH4, + NH 3 � Working Pressure - 1~ 10 Torr (Base pressure: ~ 10 -6 Torr) � Plasma Power - DC 1000V, 1A � Large Area Substrate - 4” diameter S.G. KIM, MIT
CNT with acetylene gas S.G. KIM, MIT
MIT Nanoscanning Platform for Bio Assays • Nanotube tip with tunable stiffness in-plane AFM • (Underwater specimen) • Simultaneous Imaging and Pipetting • Multi-energy probing/channeling • Arrayable scanning C. Muller-Falcke, et al., Optics East, Philadelphia, PA, October, 2004 S.G. KIM, MIT
Recommend
More recommend