multi party computation
play

Multi-Party Computation: Second year Eduardo Soria Vzquez October - PowerPoint PPT Presentation

Multi-Party Computation: Second year Eduardo Soria Vzquez October 11, 2017 A Year in a slide 1. Conferences attended : 1. Flagship: TCC 2016-B, Eurocrypt 2017. 2. Domain-specific: TPMPC. 3. Smaller Meetings: ECRYPT collaborative writing


  1. Multi-Party Computation: Second year Eduardo Soria Vázquez October 11, 2017

  2. A Year in a slide 1. Conferences attended : 1. Flagship: TCC 2016-B, Eurocrypt 2017. 2. Domain-specific: TPMPC. 3. Smaller Meetings: ECRYPT collaborative writing workshop, HEAT, Lattice Meeting (ENS Lyon). 2. Talks given: TCC 2016-B, Lattice Meeting: More Efficient Constant-Round Multi-Party Computation from BMR and SHE . 3. Research visits: Thales UK, Bar-Ilan University. 4. Outreach: Digimakers (coming on 11th November, 2017) Eduardo Soria-Vázquez

  3. A Year in a slide 5. Papers: * ACNS 2017: Faster Secure Multi-Party Computation of AES and DES Using Lookup Tables. Joint work with Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl and Srinivas Vivek. * ASIACRYPT 2017: Low Cost Constant Round MPC Combining BMR and Oblivious Transfer . Joint work with Carmit Hazay and Peter Scholl. * A submission to EUROCRYPT 2018 Eduardo Soria-Vázquez

  4. Low Cost Constant Round MPC Combining BMR and Oblivious Transfer Carmit Hazay, Peter Scholl, Eduardo Soria Vázquez October 11, 2017

  5. Overview 1. What is MPC? 1. Garbled Circuits: 2PC (Yao) vs MPC (BMR) 2. Results: 1. A compiler from binary MPC to BMR 2. Robustness of Garbling in BMR 3. Optimized Garbling with TinyOT 3. Conclusion Eduardo Soria-Vázquez 5

  6. Multi-Party Computation =f( x 1 , x 2 , x 3 , x 4 ) Eduardo Soria-Vázquez 6

  7. Multi-Party Computation Adversaries participate in the protocol Protocol indistinguishable from the ideal one run by a Trusted Party Eduardo Soria-Vázquez 7

  8. MPC setting in this talk Model of Computation: • Boolean circuit C Preprocessing • Preprocessing phase Adversary: corr. • Static, malicious rand. x x • Dishonest majority 1 2 Online x Main focus: x 4 3 • Constant rounds – Garbled Circuits • Concrete efficiency ( , , , ) C x x x x 1 2 3 4 Eduardo Soria-Vázquez 8

  9. Starting point: garbled circuits for semi-honest 2-PC [Yao86] Boolean circuit C Garble x x 2 1 ~ ~ C C x ~ ~ ~ x 2 Input encoding , , C X X 1 1 2 protocol ~ X ~ Encodings , X 1 2 Eval ( , ) C x 1 x 2 ( , ) C x 1 x 2 Eduardo Soria-Vázquez 9

  10. BMR: Everyone garbles (MPC) and evaluates (local computation) [BeaverMicaliRogaway90] ~ C Boolean circuit C Garble Eval ~  ( 1 , , ) C x x 1  , , x x Inputs X n Input n i Encoding Local Generic MPC Can be any non-constant round protocol Eduardo Soria-Vázquez 7

  11. Challenge in BMR: evaluate Garbling step in MPC, efficiently Eduardo Soria-Vázquez 11

  12. Comparison of approaches to BMR with active security Protocol Based on Free XOR Main cost per gate ZK proofs of PRG BMR90 Generic MPC computation LPSY15 MPC in F p 8n + 5 MPC mult. O(n 2 ) ZK proofs of LS S 16 SHE plaintext knowledge This talk OT + MPC in F 2 1 MPC mult. in F 2 (and [KRW17]) Eduardo S oria-Vázquez 12

  13. Garbling an AND gate with Yao u v w 0 0 0 0 1 0 1 0 0 u w 1 1 1 v Eduardo Soria-Vázquez 13

  14. Garbling an AND gate with Yao u v w 0 0 0 0 1 0 , , K K 0 , 1 u u 1 0 0 , , K K 0 , 1 w w 1 1 1 , , K K 0 , 1 v v • Pick 2 random keys for each wire Eduardo Soria-Vázquez 14

  15. Garbling an AND gate with Yao   E K , , 0 K K w u , 0 v , 0   E K , , 0 K K w , 0 , 1   u v E K , , K K , , 0 K K w , 1 , 0 u v   0 , 1 u u , , K K E K 0 , 1 w w , , 1 K K w , 1 , 1 u v , , K K 0 , 1 v v • Pick 2 random keys for each wire • Encrypt the truth table of each gate Eduardo Soria-Vázquez 15

  16. Garbling an AND gate with Yao   E K , , 0 K K w u , 0 v , 1   E K , , 1 K K w   , 1 , 1 u v E K , , K K , , 0 K K w , 0 , 0 u v   0 , 1 u u , , K K E K 0 , 1 w w K , K w , 0 , 1 , 0 u v , , K K 0 , 1 v v • Pick 2 random keys for each wire • Encrypt the truth table of each gate • Randomly permute the entries Eduardo Soria-Vázquez 16

  17. Garbling in BMR Eduardo Soria-Vázquez 17

  18. BMR has an MPC-friendly Garbling   Enc K , , 0 K K w u , 0 v , 1   Enc K , , 1 K K w   , 1 , 1 u v Enc K , , K K , , 0 K K w , 0 , 0 u v   0 , 1 u u , , K K Enc K 0 , 1 w w K , K w , 0 , 1 , 0 u v , , K K • 0 , 1 v v Pick 2n random keys for each wire:   1 n  ( , , ), { 0 , 1 } K K K b , , , u b u b u b Initially, party P i gets keys K i u,0 , K i u,1 . • Next slides: – Encrypt the truth table of each gate – Randomly permute the entries Eduardo Soria-Vázquez 18

  19. Encryption in BMR is straightforward n    g Enc   j j ( ) , K K F g j K , K , 0 , 0 w w i i , Input PRF keys u, a v, b K K , , u a v b  i 1 Enc j ( ) and values K g g g Enc  Enc Enc 1 n  ( ) ( ) || || ( ) , 0 K K K w K , K K , K K , K , 0 , , w w a w b u, a v, b u, a v, b u, a v, b Generic MPC : just XOR F is a double-key PRF, g is gate index. Next: Randomly permute the entries Eduardo Soria-Vázquez 19

  20. Entire BMR Garbling (with Free-XOR) Garbled AND gate is:             Garb Enc j j ( , , , ) (( ) ( ) ) g j a b K R a b Enc j , 0 ( ) w u v w ~ K g , 0 w R j Secret permutation bits   2 to shuffle entries for { 1 ,..., } and ( , ) { 0 , 1 } j n a b   j j j R j : Fixed string enabling Free-XOR, secret to party P j : K K R , 1 , 0 w w Observation (next slide) : Mult. are bit/bit or bit/string only. [Ben-Efraim Lindell Omri 16] Eduardo Soria-Vázquez 20

  21. Transforming any MPC to BMR (Constant rounds for Boolean Circ.) For each AND gate: •     Sample , , { 0 , 1 } u v w • Compute shares of : Input R j         j (( ) ( ) ) R a b u v w  2 for ( , ) { 0 , 1 } a b MPC ~ shares of XOR C (shares of) Enc j ( ) K , 0 w Eduardo Soria-Vázquez 21

  22. Transforming any MPC to BMR (Constant rounds for Boolean Circ.) For each AND gate: •     Sample , , { 0 , 1 } u v w    i i i , , 1 x F 2 mult in u v w Input R j MPC Consistency Check  i i , u R n(n-1) COTs for bit/string mult. ~ shares of XOR C (shares of) Enc j ( ) K , 0 w Eduardo Soria-Vázquez 22

  23. Robustness of Garbling in BMR Eduardo Soria-Vázquez 23

  24. BMR garbling is very robust to errors Thought experiment with an adversary: x , C ~ C C Garble x Encoding ~ X ˆ C Eval  / y Eduardo Soria-Vázquez 24

  25. BMR garbling is very robust to errors • Intuition: – Only possible break is to flip honest P j ‘s masked key:   j j j Enc ( ) Enc ( ) K K R w w – Negligible (guess R j ) if the mask was obtained from a suitable PRF         Enc j j ( ) ,  , K K F g j F g j 1 1 w w n n , , K K K K u v u v • We strengthen previous results (proofs) [LPSY15, KRW17]: – Allowed incorrect PRF values, non-adaptively . – Did not directly reduce to PRF security. – Shares of garbling had to be authenticated (less efficient). Eduardo Soria-Vázquez 25

  26. An optimized protocol for BMR: TinyOT Eduardo Soria-Vázquez 26

  27. Optimized variant based on TinyOT • Multi-party TinyOT protocol [FrederiksenKellerOrsiniScholl15] – Efficient instantiation of binary MPC. – Optimized in [KatzRanellucciWang17] • Uses Correlated OT to create information-theoretic MACs – MAC (x) = K + x R – For shared bit x, and MAC key (K, R) • Fix R to be the global difference in Free-XOR – Bit/string products for free! Eduardo Soria-Vázquez 27

  28. Optimized variant based on TinyOT For each AND gate: •     Sample , , { 0 , 1 } u v w    i i i , , 1 x F 2 mult in u v w Input R j MPC Consistency Check  i i , u R n(n-1) COTs for bit/string mult. ~ shares of XOR C (shares of) Enc j ( ) K , 0 w Eduardo Soria-Vázquez 28

  29. Comms. (MB) for 1 AES evaluation in efficient constant-round MPC 1000000 100000 10000 1000 10 parties 3 parties 100 10 1 SPDZ-BMR SHE-BMR MASCOT-BMR This work (2015) (2016) (2016) (2017) Eduardo Soria-Vázquez 29

  30. Conclusion Constant Rounds (Almost) For Free: • Small, O(k) overhead on top of any protocol for binary circuits. • Almost no overhead when using TinyOT. Improved security proof: Unauthenticated shares, better online. Open Problems: • Can BMR garbling be optimized? Currently: 4nk bits + O(n 2 ) PRF eval. • How about TinyOT? • Can we further tailor other MPC protocols for BMR garbling? Eduardo Soria-Vázquez 30

  31. Thank you! http://ia.cr/2017/214 Low Cost, Constant Round MPC Combining BMR and Oblivious Transfer Carmit Hazay, Peter Scholl and Eduardo Soria-Vázquez Eduardo Soria-Vázquez 31

  32. Runtimes AES (B=3) SHA-256 (B=3) Benchmark: 9 parties, 1 Gbps LAN, 2.3GHz Intel Xeon CPUs with 20 cores. Eduardo Soria-Vázquez 32

Recommend


More recommend