Multi-layer drum winches within subsea hoisting cranes Prof. Dr.-Ing. A. Lohrengel, M. Schulze M.Sc., Dipl.-Ing. M. Wächter Clausthal University of Technology, Institute of Mechanical Engineering IMCA, Lifting & Rigging Seminar, 27 th September 2018 Martin Schulze M.Sc. 1
Fibre rope in multi-layer winding A good idea? No Yes Martin Schulze M.Sc. 2
Contents Introduction Important rope properties for multi-layer winding Rope elasticity's Rope deformation and winding pack Selection of rope diameter Conclusion Martin Schulze M.Sc. 3
Introduction 1 Trends in the use of running ropes • Demand for large rope length • Lightweight design Implications form these trends • Use of high performance fibre 1 (HPF) ropes in running rope applications • Lightweight drum design • Design a safe system of fibre rope and drum 1 http://www.newmaker.com/news-564-Hampidjan's-Dynex%C2%AE-Warps-made-with-Dyneema%C2%AE-have-a-wide-range-of-benefi-ts- to-offer-the-commercial-fi-sherman.html 29.03.2017 Martin Schulze M.Sc. 4
Design strategies for fibre rope application Option 1: Design a system of HPF rope and drum • HPF rope selection suitable to the application • Drum adjustment referring to HPF rope Optimised system – more expensive option Option 2: Replacement of wire ropes with HPF ropes (on wire rope drum) • HPF rope selection suitable to the application • HPF rope selection suitable to the drum Cheaper option – more difficult rope selection Martin Schulze M.Sc. 5
Rope properties and their influence on the drum Wire rope Fibre rope Influence on the drum Lateral stiffness Friction Deformation Martin Schulze M.Sc. 6
Important rope properties Load reducing effect in multilayer winding longitudinal elasticity 𝜌 4 ⋅ 𝑒 𝑛𝑛𝑛 ⋅ 𝑒 𝑛𝑛𝑛 ⋅ 𝑔 𝑢𝑢𝑛 ⋅ 𝐹 𝑇𝑇 Δ𝐺 𝑡𝑡 = 𝑞 𝑠 ⋅ ⋅ 𝐵 𝑢𝑢𝑛 lateral elasticity 2 ⋅ 𝑠 𝐹 𝑇𝑇 𝑛 Rope deformation Winding radius Rope elasticity Martin Schulze M.Sc. 7
Ropes No. Name d in mm Material Construction Core Cover-braid 1 DynIce 22 Dyneema 12 strand Poly- Dyneema Warp SK 75 braided, ethy- heat stretched lene 2 DynIce 23 Dyneema 12 strand Dux braided, heat stretched 3 Eurolift 2 23 wire 2 Schwarzer, T.: Beitrag zur Gestaltung und Dimensionierung von Windentrommeln bei mehrlagiger Bewicklung mit Kunststoff- und Hybridseilen, Dissertation, TU Clausthal Martin Schulze M.Sc. 8
Rope elasticity's 𝜌 4 ⋅ 𝑒 𝑛𝑛𝑛 ⋅ 𝑒 𝑛𝑛𝑛 ⋅ 𝑔 𝑢𝑢𝑛 ⋅ 𝐹 𝑇𝑇 Δ𝐺 𝑡𝑡 = 𝑞 𝑠 ⋅ ⋅ 𝐵 𝑢𝑢𝑛 2 ⋅ 𝑠 𝐹 𝑇𝑇 𝑛 Lateral Longitudinal Ratio longitudinal to elasticity 𝑭 𝑻𝑻 elasticity 𝑭 𝑻𝑻 lateral elasticity Martin Schulze M.Sc. 9
Multi-layer drum Drum Grooving system (Lebus-grooving) Flanges Parallel CS PS Cross section 1 1 2 section 2 Drum barrel Coil Martin Schulze M.Sc. 10
Rope deformation Scanner configuration Compiled rope cross section Scanner 2 Scanner 3 Measurement • Find d min and d max • Related circularity 𝑆 𝑠𝑢𝑠 = 𝑒 𝑛𝑛𝑛 𝑒 𝑛𝑛𝑛 Scanner 1 Martin Schulze M.Sc. 11
Rope deformation Cross section rope 1 Cross section rope 2 Core and cover-braid: R rel = 0.93 No core and cover-braid: R rel = 0.81 radial position y in mm radial position y in mm 260 260 250 250 240 240 230 230 220 220 -50 -40 -30 -20 -10 0 10 -40 -30 -20 -10 0 10 20 30 axial position x in mm axial position x in mm Martin Schulze M.Sc. 12
Winding pack Scanner configuration Compiled winding Scanner 1 pack Martin Schulze M.Sc. 13
Winding pack Winding pack rope 1 Winding pack rope 2 Core and cover-braid: R rel = 0.93 No core and cover-braid: R rel = 0.81 340 340 radial position y in mm radial position y in mm 320 320 300 300 280 280 260 260 240 240 -80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80 axial position x in mm axial position x in mm Martin Schulze M.Sc. 14
Winding pack Winding pack rope 1 Winding pack rope 2 Core and cover-braid: R rel = 0.93 No core and cover-braid: R rel = 0.81 340 340 radial position y in mm radial position y in mm 320 320 300 300 280 280 260 260 240 240 -80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80 axial position x in mm axial position x in mm Martin Schulze M.Sc. 15
Selection of rope diameter 𝑆 𝑠𝑢𝑠 = 𝑒 𝑛𝑛𝑛 Minimum breaking load R rel = 0.93 R rel = 0.81 𝑒 𝑛𝑛𝑛 Rope fits best into groove ( 𝑓 = 1.05 ⋅ 𝑒 𝑛𝑜𝑛 ) R rel = 1 R rel = 0.9 R rel = 0.8 R rel = 0.7 d nom = const. d nom = 23.00 mm d nom = 23.00 mm d nom = 23.00 mm d nom = 23.00 mm A = const. d max = const. d nom = 23.00 mm d nom = 22.69 mm d nom = 21.39 mm d nom = 20.01 mm A = decr. Martin Schulze M.Sc. 16
Selection of rope diameter Simplified test to determine the deformation: 𝑒 𝑛𝑛𝑛 𝑆 𝑠𝑢𝑠 = 𝑒 𝑛𝑛𝑛 • Relevant longitudinal force • Lateral force as on rope drum • Measure rope deformation Martin Schulze M.Sc. 17
Option 1: Design a system of HPF rope and drum Adjust the drum surface to the deformed HPF rope Leave some space in the cross section area Shape of grooving Filling bars at the flanges Martin Schulze M.Sc. 18
Comparison of design options Option? Option 2: Option 1: Rope 1 Rope 2 Martin Schulze M.Sc. 19
Conclusion Ratio of elasticity’s of HPF rope can be similar to wire rope Deformation of rope cross section must be taken into account for options 1 and 2 • perform a simplified test or a spooling test The goal should be option 1: Design a system of HPF rope and drum Adjusted drum surface Wire rope like HPF rope Martin Schulze M.Sc. 20
Recommend
More recommend