Mu Multip ltiple le Int Integ egrals rals
Double Integrals: y d b d x b f x y dydx ( , ) f x y dy dx ( , ) a c x a y c Important properties of the double integral: , , a f x y dA a f x y dA R f x y , g x y , dA f x y dA , g x y dA , R R R f x y dx dy , f x y dx dy , f x y dx dy , R R R 1 2
Example 2 3 2 Evaluate the iterated integral: x ydxdy 1 0 y 2 2 3 3 Solution: 2 2 x ydxdy x ydx dy 1 0 y 1 0 3 2 2 3 x y dy 9 ydy 3 1 1 0 2 2 y 27 9 2 2 1
Evaluating Double Integrals over General Regions h y d g x 2 b 2 f ( , x y ) dA f x y dx , dy f ( , x y dA ) f x y , dy dx D c h y D a g x 1 1
Example ( 2 ) D x y dA Evaluate 2 2 D y : 2 x and y 1 x . Solution: 2 1 1 x ( x 2 ) y dA ( x 2 y dy ) dx D 2 x 1 y 2 x 2 1 x 1 2 xy y dx 2 1 2 x 1 32 2 3 4 (1 x 2 x x 3 x ) dx 15 1
Example 2 1 2 y e dy dx Evaluate 0 x /2 Solution: D y : x /2, y 1, x 2, x 0. y y 1 2 y 2 1 1 2 2 y y e dy dx e dx dy y x / 2 0 / 2 0 0 x x 1 x 2 y x 2 2 y x e dy x 0 0 1 2 1 2 1 y y 1 2 y e dy e e 1 1 e 0 0
The Double Integral in Polar Coordinate: x r cos y r sin rdrd 2 2 dA x y r
Example 2 (3 x 4 y ) dA in the upper half-plane Evaluate D 2 2 2 2 bounded by the circles D x : y 1 and x y 4. Solution: 2 2 2 2 (3 x 4 y ) dA (3 cos r 4 r sin ) rdrd R 0 r 1 2 2 3 2 (3 r cos 4 r sin ) drd 0 r 1 2 3 4 2 ( cos sin ) r r d 1 0 15 15 2 (7cos 15sin ) d (7cos (1 cos2 )) d 2 2 0 0
Applications of Double Integrals: (1) Calculating the area of a plane region: A dA D (2) Calculating the Volumes: V f x y dA ( , ) . D
Example Calculate the area of a region bounded the curves: 2 y 2 x , y x . Solution: 2 1 2 x 1 2 2 x A dA dy dx y dx x 2 x 2 D 1 1 3 2 x x 2 2 x x dx 2 x 3 2 2 2 1 1 8 4 27 2 4 3 2 3 2 6
Example Calculate the volume of a solid bounded by the surfaces: x 0, y 0, x y z 1, z 0. Solution: V f x y dA ( , ) 1 x y dA D D 1 1 x 1 x y dydx 0 0 1 x 2 1 1 2 1 x y 1 x y dx 1 x 1 x dx 2 2 0 0 0 1 2 3 1 1 x 1 x 1 dx 2 6 6 0 0
Example Find the volume of the solid bounded by the paraboloid: 2 2 1 , 0. z x y z Solution: 2 2 V f x y dA ( , ) (1 x y ) dA D D 2 1 2 1 2 (1 ) 3 r rdrd d ( r r dr ) 0 0 0 0 1 2 4 r r 2 2 4 2 0
Recommend
More recommend