moving and computing
play

MOVING AND COMPUTING IN BY DISCRETE SPACES GRASTA/MAC Tutorial - PowerPoint PPT Presentation

MOVING AND COMPUTING IN BY DISCRETE SPACES GRASTA/MAC Tutorial 2015 Netscape Graph G node (site , host) edge (link , channel) GRASTA/MAC Tutorial 2015 Netscape Netscape inhabited by computational mobile entities called agents


  1. Example Map Construction a map of the graph must be constructed by at least one agent Exploration every node must be visited by at least one agent Have I been here before ? 1 3 2 GRASTA/MAC Tutorial 2015

  2. Example Map Construction a map of the graph must be constructed by at least one agent Exploration every node must be visited by at least one agent GRASTA/MAC Tutorial 2015

  3. Example Map Construction a map of the graph must be constructed by at least one agent Exploration every node must be visited by at least one agent GO AROUND ! GRASTA/MAC Tutorial 2015

  4. Example Map Construction a map of the graph must be constructed by at least one agent Exploration every node must be visited by at least one agent GO AROUND ! When can I stop ? GRASTA/MAC Tutorial 2015

  5. Example Map Construction a map of the graph must be constructed by at least one agent Exploration every node must be visited by at least one agent GO AROUND ! When can I stop ? NEVER ! GRASTA/MAC Tutorial 2015

  6. Example If it can mark the node: GO AROUND ! GRASTA/MAC Tutorial 2015

  7. Example If it can mark the node: GO AROUND until find marked node GRASTA/MAC Tutorial 2015

  8. Example If it can mark the node: GO AROUND until find marked node GRASTA/MAC Tutorial 2015

  9. Example More than one agent: GRASTA/MAC Tutorial 2015

  10. More than one agent: left right ? GO AROUND in different directions until meet other who is going left ? GRASTA/MAC Tutorial 2015

  11. Computability and Complexity Many factors to be considered GRASTA/MAC Tutorial 2015

  12. Computability and Complexity Asynchronous vs Synchronous Anonymous vs Distinct Ids Finite-State vs Turing Oblivious vs Persistent Memory Interaction and Communication Mechanisms GRASTA/MAC Tutorial 2015

  13. Computational Models : Interaction and Communication: Communication and Coordination Vision Face-to-Face Tokens Whiteboards GRASTA/MAC Tutorial 2015

  14. Computational Models : Interaction and Communication: Communication and Coordination Vision Face-to-Face Tokens Whiteboards GRASTA/MAC Tutorial 2015

  15. Vision Each can see the graph and the location of the other robots within its visibility range - LOOK-COMPUTE-MOVE cycles - Oblivious robots - Anonymous nodes FSYNC, SSYNC, ASYNC Limited vs Global Visibility Labelled vs Unlabelled edges Sense of Direction vs No Orientation GRASTA/MAC Tutorial 2015

  16. Vision Klasing, Markou, Pelc, TCS 2008 GATHERING Klasing, Kosowski, Navarra, TCS 2010 Kamei,Lamani,Ooshita,Tixeuil, MFCS 2012 Di Stefano,Navarra, SIROCCO 2013 Izumi,Izumi,Kamei,Ooshita, IEICE Trans. 2013 Di Stefano,Navarra, SSS 2014 D'Angelo,Di Stefano,Navarra, Distributed Computing 2014 D'Angelo,Di Stefano,Navarra, J. Discrete Alg. 2014 Kamei,Lamani,Ooshita, SRDS 2014 Di Stefano,Montanari,Navarra, IWOCA 2015 Cicerone,Di Stefano, Navarra, ALGOSENSORS 2015 D'Angelo,Di Stefano,Klasing,Navarra, TCS 2015 GRASTA/MAC Tutorial 2015 D'Angelo,Di Stefano,Navarra,Nisse,Suchan, Algorithmica 2015

  17. Vision EXPLORATION Devismes, Petit,Tixeuil, SIROCCO 2009 Chalopin, Flocchini,Mans, Santoro. WG 2010 Lamani, Potop-Butucaru,Tixeuil, SIROCCO 2010 Flocchini, Ilcinkas, Pelc, Santoro, TCS 2010 Flocchini, Ilcinkas, Pelc, Santoro, IPL 2011 Devismes,Lamani,Petit,Raymond,Tixeuil, SSS 2012 Datta,Lamani,Larmore,Petit, ICDCS 2013 Flocchini, Ilcinkas, Pelc, Santoro, Algorithmica 2013 GRASTA/MAC Tutorial 2015

  18. Computational Models : Interaction and Communication: Communication and Coordination Vision Face-to-Face Tokens Whiteboards GRASTA/MAC Tutorial 2015

  19. Whiteboards Each node has a whiteboard When at a node, an agent can write on the whiteboard GRASTA/MAC Tutorial 2015

  20. Whiteboards Hello, I was here. When at a node, an agent can write on the whiteboard GRASTA/MAC Tutorial 2015

  21. Whiteboards Hello, I was here. When at a node, an agent can read what is written on the whiteboard GRASTA/MAC Tutorial 2015

  22. Whiteboards LINK 3 IS SAFE I’M CHECHING LINK 2 Agents communicate through whiteboards, accessed in fair mutual exclusion GRASTA/MAC Tutorial 2015

  23. Whiteboards are powerful - Allow to BREAK SYMMETRY GRASTA/MAC Tutorial 2015

  24. Whiteboards are powerful - Allow to BREAK SYMMETRY I am RIGHT agent GRASTA/MAC Tutorial 2015

  25. Whiteboards are powerful - Allow to BREAK SYMMETRY I am RIGHT agent I am LEFT agent GRASTA/MAC Tutorial 2015

  26. Cost Measures : Team size Number of agents used to solve problem / perform task GRASTA/MAC Tutorial 2015

  27. Cost Measures : Number of Moves Number of moves made by agents to solve problem GRASTA/MAC Tutorial 2015

  28. Cost Measures : Memory Amount of memory a node provides to the agents GRASTA/MAC Tutorial 2015

  29. Cost Measures Cost Measures : Memory Size of whiteboard WHITEBOARD System Memory LOCAL CLOCK GRASTA/MAC Tutorial 2015 LINKS

  30. BLACK HOLE SEARCH GRASTA/MAC Tutorial 2015

  31. Black Hole Search Black Hole Destroys any agent arriving at that node Does not leave any trace of destruction Its location is unknown to the agents GRASTA/MAC Tutorial 2015

  32. Black Hole Search Dobrev, Flocchini, Prencipe, Santoro, Algorithmica 2006 Dobrev, Flocchini, Prencipe, Santoro, Distributed Comp. 2006 Czyzowicz, Kowalski,Markou,Pelc, Found. Infor. 2006 Dobrev,Flocchini,Kralovic,Prencipe,Ruzicka,Santoro, Networks 2006 Dobrev, Flocchini, Santoro, TCS 20 ’06 Klasing, Markou, Radzik,Sarracco, TCS 20 ’07 Czyzowicz, Kowalski, Markou, Pelc, Comb.Prob.Comp . 2007 Chalopin, Das, Santoro, DISC 2007 Klasing,Markou,Radzik,Sarracco, Networks 2008 Dobrev,Santoro,Shi, IJFCS 2008 Balamohan, Flocchini, Miri, Santoro, Discrete Math. 2011 Kosowski,Navarra,Pinotti, TCS 2011 Flocchini, Ilcinkas, Santoro, Algorithmica 2012 Chalopin, Das, Labourel, Markou, TCS 2013 Balamohan, Dobrev, Flocchini, Santoro, TCS 2014 Shi,Garcia-Alfaro. Corriveau , J. Par. Dist. Comp . 2014 D'Emidio, Frigioni, Navarra, TCS 2015 GRASTA/MAC Tutorial 2015

  33. BH is not uncommon !! GRASTA/MAC Tutorial 2015

  34. Local Process / Software Failure GRASTA/MAC Tutorial 2015

  35. Local Process / Software Failure - Virus - Software malfunction Port management malfunction Security malfunction Agent Platform malfunction GRASTA/MAC Tutorial 2015

  36. Hardware Failure Crash failure of a site in a asynchronous network = Black Hole GRASTA/MAC Tutorial 2015

  37. Black Hole Search Find the location of the black hole. At least one agents must survive and know the location of the black hole GRASTA/MAC Tutorial 2015

  38. Timing Asynchronous Agent ’ s actions (computations, movements) take a finite but otherwise unpredictable amount of time GRASTA/MAC Tutorial 2015

  39. AN EXAMPLE : Black Hole Search in a Ring n nodes k agents one black hole GRASTA/MAC Tutorial 2015

  40. AN EXAMPLE : Black Hole Search in a Ring n nodes k agents one black hole left right n known Min k ? How ? GRASTA/MAC Tutorial 2015

  41. Ring: Basic Facts One agent cannot locate the black hole alone n-1 agents can GRASTA/MAC Tutorial 2015

  42. 10 1 9 2 8 3 7 4 6 5 how ? GRASTA/MAC Tutorial 2015

  43. 7 6 2 9 5 1 4 8 3 10 10 1 9 2 8 3 7 4 6 5 how ? GRASTA/MAC Tutorial 2015

  44. 7 6 2 9 5 1 4 8 3 10 10 1 9 2 8 3 7 4 6 5 Check if node j is BH : j go to j-1 , return; go to j+1 , return. GRASTA/MAC Tutorial 2015

  45. 7 6 2 9 5 1 4 8 3 10 10 1 9 2 8 3 7 4 6 5 Check if node j is BH : j go to j-1 , return; go to j+1 , return. GRASTA/MAC Tutorial 2015

  46. 7 6 2 9 5 1 4 8 10 10 1 3 9 2 8 3 7 4 6 5 Check if node j is BH : j go to j-1 , return; go to j+1 , return. GRASTA/MAC Tutorial 2015

  47. 7 6 2 9 5 1 4 8 10 10 1 9 2 8 3 3 7 4 6 5 Check if node j is BH : j go to j-1 , return; go to j+1 , return. GRASTA/MAC Tutorial 2015

  48. 7 6 2 9 5 1 4 8 8 3 10 10 1 9 2 8 3 7 4 6 5 Check if node j is BH : j go to j-1 , return; go to j+1 , return. GRASTA/MAC Tutorial 2015

  49. 8 10 1 9 2 8 3 7 4 6 5 Check if node j is BH : j go to j-1 , return; go to j+1 , return. GRASTA/MAC Tutorial 2015

  50. 8 10 1 9 2 8 3 7 4 6 5 only one agent survives and knows BH 8 n-2 agents die O(n 2 ) moves GRASTA/MAC Tutorial 2015

  51. Minimize Cas ualties GRASTA/MAC Tutorial 2015

  52. Minimize Cas ualties At most one agent disappears on the same link ! GRASTA/MAC Tutorial 2015

  53. Cautious Walk Unexplored port could be dangerous GRASTA/MAC Tutorial 2015

  54. Cautious Walk Active port GRASTA/MAC Tutorial 2015

  55. Cautious Walk Active port GRASTA/MAC Tutorial 2015

  56. Cautious Walk Explored port. Now it is safe GRASTA/MAC Tutorial 2015

  57. Cautious Walk : RULES Don ’ t go on an Active port GRASTA/MAC Tutorial 2015

  58. ASYNCHRONY makes the problem DIFFICULT ? GRASTA/MAC Tutorial 2015

  59. ASYNCHRONY makes the problem DIFFICULT ? ? I cannot use timeouts I might wait forever GRASTA/MAC Tutorial 2015

  60. Black Hole Search in a Ring 10 1 9 2 8 3 7 4 6 5 using cautious walk GRASTA/MAC Tutorial 2015

  61. using cautious walk 7 6 2 9 5 1 4 8 3 10 10 1 9 2 8 3 7 4 6 5 Check if node j is BH : j go to j-1 , return; go to j+1 , return. GRASTA/MAC Tutorial 2015

  62. 8 10 10 1 9 2 8 3 7 4 6 5 Check if node j is BH : j go to j-1 , return; go to j+1 , return. GRASTA/MAC Tutorial 2015

  63. 8 10 10 1 9 2 8 3 7 4 6 5 GRASTA/MAC Tutorial 2015

  64. 10 10 1 9 2 8 3 7 4 6 5 with n-1 agents using cautious walk at most 2 agents die O(n 2 ) moves GRASTA/MAC Tutorial 2015

  65. Minimize number of agents What is the smallest number of agents ? GRASTA/MAC Tutorial 2015

  66. Black Hole Search in a Ring One agent cannot locate the black hole alone YES ! How about two agents ? (one dies, one survives) YES ! Less than O(n 2 ) moves ?

  67. Ring: Two Agents Proceed in phases. At phase i - divide the unexplored area in two contiguous disjoint parts of almost equal size - agents explore (using cautious walk) the different parts GRASTA/MAC Tutorial 2015

Recommend


More recommend