modulo 2 3 parallel prefix addition via
play

Modulo-( 2 + 3 ) Parallel Prefix Addition via Diminished-3 - PowerPoint PPT Presentation

Modulo-( 2 + 3 ) Parallel Prefix Addition via Diminished-3 Representation of Residues Authors: Ghassem Jaberipur, Sahar Moradi Cherati Arith 26 Kindly presented by: Paulo Srgio Alves Martins Contents 2/22 3/22 I NTRODUCTION Popular


  1. Modulo-( 2 π‘œ + 3 ) Parallel Prefix Addition via Diminished-3 Representation of Residues Authors: Ghassem Jaberipur, Sahar Moradi Cherati Arith 26 Kindly presented by: Paulo SΓ©rgio Alves Martins

  2. Contents 2/22

  3. 3/22 I NTRODUCTION οƒ˜ Popular Ο„ = 2 π‘œ βˆ’ 1,2 π‘œ , 2 π‘œ + 1 ο‚΄ Residue number systems (RNS) ο‚΄ β„› = {𝑛 1 , 𝑛 2 … 𝑛 𝑙 } , 𝑛 𝑗 (1 ≀ 𝑗 ≀ 𝑙) οƒ˜ General form: 𝑙 ο‚΄ 𝑁 = 𝑗=1 𝑛 𝑗 2 π‘œ Β± Ξ΄ 1 ≀ Ξ΄ < 2 π‘œβˆ’1 ο‚΄ Applications  Cryptography  digital signal/image processing Parallel prefix modulo- ( 2 π‘œ βˆ’ Ξ΄ ) adders: Delay  High Speed ο‚΄ RNS Features 3 + 2 log π‘œ Ξ” οƒ˜ Ξ΄ = 1  Low Power οƒ˜ Ξ΄ = 3 [ Jaberipur,2015 ] 4 + 2 log π‘œ Ξ” οƒ˜ Ξ΄ = 2 π‘Ÿ + 1 [ Langroudi,2015 ] 5 + 2 log π‘œ Ξ” π‘Œ, 𝑍 ∈ β„› π‘Œ = 𝑦 1 , 𝑦 2 … , 𝑦 𝑙 , 𝑍 = (𝑧 1 , 𝑧 2 … , 𝑧 𝑙 ) , οƒ˜ 2 π‘œ + Ξ΄ = 2 π‘œ+1 βˆ’ Ξ΄β€² where 𝑦 𝑗 = π‘Œ 𝑛 𝑗 , 𝑧 𝑗 = 𝑍 𝑛 𝑗 , where 1 < Ξ΄ β€² = 2 π‘œ βˆ’ Ξ΄ < 2 π‘œ π‘Ž = π‘Œ βŠ› 𝑍 , 𝑨 𝑗 = 𝑦 𝑗 βŠ› 𝑧 𝑗 , where βŠ›βˆˆ {+, βˆ’,Γ—} No direct fast solution

  4. D IMINISHED -1 ADDERS 4/22 Diminished-1 encoding Diminished-1 addition 𝑇 = 𝐡 + 𝐢 2 π‘œ +1 = 𝑇 β€² + 𝑨 𝑇 , 𝐡 = 𝐡 β€² + 𝑨 𝐡 , 𝐢 = 𝐢 β€² + 𝑨 𝐢 π‘Œ : A modulo- (2 π‘œ + 1) residue ∈ 0,2 π‘œ 𝑇 β€² = 𝑇 βˆ’ 1 , 𝐡 β€² = 𝐡 βˆ’ 1 , 𝐢 β€² = 𝐢 βˆ’ 1 for 𝑇, 𝐡, 𝐢 > 0 π‘Œ = π‘Œ β€² + 𝑨 π‘Œ , where π‘Œ β€² = π‘Œ βˆ’ 1 ∈ 0,2 π‘œ βˆ’ 1 for π‘Œ > 0 𝑨 𝑇 , 𝑨 𝐡 , 𝑨 𝐢 : zero-indicator bits 𝑨 π‘Œ = 0(1) , if and only if π‘Œ = 0(> 0) 𝐡 β€² + 𝐢 β€² = 2 π‘œ π‘₯ π‘œ β€² + 𝑋 β€² = π‘₯ π‘œβˆ’1 𝑨 𝑇 = (𝑨 𝐡 ∨ 𝑨 𝐢 ) ∧ 𝑨 𝐡 𝑨 𝐢 ∧ 𝜊 𝑋 β€² , where β€² β€² … π‘₯ 0 𝑇 β€² = 𝐡 β€² + 𝐢 β€² + 𝑨 𝐡 + 𝑨 𝐢 βˆ’ 𝑨 𝑇 2 π‘œ +1 𝑇 β€² = 𝑇 βˆ’ 1 = 𝐡 + 𝐢 2 π‘œ +1 βˆ’ 1 𝑋 β€² + 𝑨 𝐡 𝑨 𝐢 π‘₯ π‘œ = β€² 2 π‘œ = 𝐡 β€² + 1 + 𝐢 β€² + 1 βˆ’ 1 2 π‘œ +1 = 2 π‘œ π‘₯ π‘œ β€² + 𝑋 β€² + 1 2 π‘œ +1 β€² = 𝐻 π‘œβˆ’1:0 π‘₯ π‘œ 𝑋 β€² + 1 βˆ’ π‘₯ π‘œ 𝑋 β€² + π‘₯ β€²π‘œ = 2 π‘œ +1 = β€² 𝜊 = 𝑄 π‘œβˆ’1:0 𝐻 π‘œβˆ’1:0 = 1 , Iff 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 1

  5. Related Work: Modulo-( πŸ‘ 𝒐 + 𝟐 ) D1 adder 5/22 RPP TPP

  6. D IMINISHED -3 REPRESENTATION AND ADDITION

  7. 7/22 D IMINISHED -3 REPRESENTATION {0, 1, 2} π‘Œ: Moduloβˆ’ 2 π‘œ + 3 residue ∈ [0, 2 π‘œ + 2] [3, 2 π‘œ + 2] π‘Œ ∈ { 0, 1, 2} -indicator π‘ˆ π‘Œ = 𝑒 1 𝑒 0 π‘ˆ D3 π‘Œ = π‘Œβ€² + π‘ˆ Representation π‘Œ π‘Œ β€² ∈ [0, 2 π‘œ βˆ’ 1] π‘Œ β€² ∢ π‘œ bit π‘Œ = 0 ⟺ π‘Œ = 0, π‘Œ β€² = 0 π‘ˆ π‘Œ = 1 ⟺ π‘Œ = 1, π‘Œ β€² = 0 π‘ˆ π‘Œ = 2 ⟺ π‘Œ = 2, π‘Œ β€² = 0 π‘ˆ π‘Œ = 3 ⟺ 3 ≀ π‘Œ ≀ 2 π‘œ + 2, π‘Œ β€² ∈ [0,2 π‘œ βˆ’ 1] π‘ˆ

  8. Modulo-( πŸ‘ 𝒐 + πŸ’ ) D3 ADDITION 8/22 𝐡 ∈ [0, 2 π‘œ + 2] 𝐡 = 𝐡 β€² + π‘ˆ … 𝐡′ = 𝒃 π’βˆ’πŸ 𝒃 πŸ‘ 𝒃 𝟐 𝒃 𝟏 𝐡 𝐢 β€² = … 𝒄 π’βˆ’πŸ 𝒄 πŸ‘ 𝒄 𝟐 𝒄 𝟏 𝐢 ∈ [0, 2 π‘œ + 2] 𝐢 = 𝐢 β€² + π‘ˆ 𝐢 β€² … β€² β€² β€² β€² π‘₯ 𝒐 π‘₯ π’βˆ’πŸ π‘₯ 2 π‘₯ 1 π‘₯ 0 𝐡, 𝐢, 𝑇 β‰₯ 3 𝑇 β€² = 𝑇 βˆ’ 3 = 𝐡 + 𝐢 2 π‘œ +3 βˆ’ 3 = 𝐡 β€² + 3 + 𝐢 β€² + 3 βˆ’ 3 2 π‘œ +3 = 2 π‘œ π‘₯ π‘œ β€² + 𝑋 β€² + 3 2 π‘œ +3 𝑋 β€² + 3 1 βˆ’ π‘₯ π‘œ 𝑋 β€² + 3π‘₯ β€²π‘œ = 2 π‘œ +3 = β€²

  9. Comparison D1 and D3 9/22 πŸ” + πŸ‘ π’Žπ’‘π’‰ 𝒐 𝜠 πŸ’ + πŸ‘ π’Žπ’‘π’‰ 𝒐 𝜠

  10. Detect Special Cases 10/22 𝑻 = 𝑩 + π‘ͺ πŸ‘ 𝒐 +πŸ’ ∈ {𝟏 ,1,2} π‘¬πŸ IF 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 1 THEN ΞΎ 1 = 1 ELSE ΞΎ 1 = 0 𝑻 = 𝑩 + π‘ͺ πŸ‘ 𝒐 +𝟐 = 𝟏 IF 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 2 THEN ΞΎ 2 = 1 ELSE ΞΎ 2 = 0 IF 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 1 THEN ΞΎ = 1 ELSE ΞΎ = 0 IF 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 3 THEN ΞΎ 3 = 1 ELSE ΞΎ 3 = 0 ΞΎ 1 = 𝑄 π‘œβˆ’1:2 𝐻 π‘œβˆ’1:2 β„Ž 1 𝑣 0 ΞΎ 2 = 𝑄 π‘œβˆ’1:2 𝐻 π‘œβˆ’1:2 β„Ž 1 𝑣 0 ΞΎ 3 = 𝑄 π‘œβˆ’1:2 𝐻 π‘œβˆ’1:2 𝑣 1 𝑣 0

  11. D ERIVATION OF π‘ˆ 11/22 𝑇 𝒧 = 𝑄 π‘œβˆ’1:2 𝐻 π‘œβˆ’1:2 , ΞΎ 1 = π’§β„Ž 1 𝑣 0 , ΞΎ 2 = π’§β„Ž 1 𝑣 0 , ΞΎ 3 = 𝒧𝑣 1 𝑣 0 ο‚΄ Οƒ 1 = Ξ± 1 Ξ² 1 ∨ Ξ± 0 Ξ² 0 𝒧 ∨ 𝑔 1 (Ξ± 1 , Ξ² 1 , Ξ± 0 , Ξ² 0 , 𝑣 1 , 𝑀 1 , 𝑣 0 ) ο‚΄ Οƒ 0 = Ξ± 1 Ξ² 0 ∨ Ξ± 0 Ξ² 1 𝒧 ∨ 𝑔 0 Ξ± 1 , Ξ² 1 , Ξ± 0 , Ξ² 0 , 𝑣 1 , 𝑀 1 , 𝑣 0

  12. Impact of ΞΎ -dependent noise terms on 𝑼 𝑻 12/22 𝑼 𝑩 𝑼 π‘ͺ 𝛐 𝟐 𝛐 πŸ‘ 𝛐 πŸ’ 𝑼 𝑻 𝑻 Justification 𝑇 = 𝐡 + 𝐢 = 𝐡 ≀ 2 π‘œ + 2 β‰₯ 3 3 0 X X X 3 π‘ˆ 𝑇 = 3 𝑼 𝑩 𝑼 π‘ͺ 𝛐 𝟐 𝛐 πŸ‘ 𝛐 πŸ’ 𝑼 𝑻 𝑻 Justification 𝐡 β€² + 𝐢 β€² = 𝐡 β€² < 2 π‘œ βˆ’ 1 ⟹ 𝑇 = 𝐡 + 𝐢 = 𝐡 β€² + 3 + 1 < 2 π‘œ + 3 β‰₯ 4 3 1 0 X X 3 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 1 ⟹ 𝐡 + 𝐢 = 2 π‘œ + 3, 𝑇 = 𝐡 + 𝐢 2 π‘œ +3 = 0 3 1 1 X X 0 0 π‘ˆ 𝑇 = 3 𝜊 1 𝑼 𝑩 𝑼 π‘ͺ 𝛐 𝟐 𝛐 πŸ‘ 𝛐 πŸ’ 𝑼 𝑻 𝑻 Justification 𝐡 β€² + 𝐢 β€² = 𝐡 β€² < 2 π‘œ βˆ’ 2 ⟹ 𝑇 = 𝐡 + 𝐢 = 𝐡 β€² + 3 + 2 < 2 π‘œ + 3 β‰₯ 5 3 2 0 0 X 3 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 2 ⟹ 𝐡 + 𝐢 = 2 π‘œ + 3, 𝑇 = 𝐡 + 𝐢 2 π‘œ +3 = 0 3 2 0 1 X 0 0 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 1 ⟹ 𝐡 + 𝐢 = 2 π‘œ + 4, 𝑇 = 𝐡 + 𝐢 2 π‘œ +3 = 1 3 2 1 0 X 1 1 π‘ˆ 𝑇 = 𝜊 1 + 3 𝜊 1 𝜊 2 𝑼 𝑩 𝑼 π‘ͺ 𝛐 𝟐 𝛐 πŸ‘ 𝛐 πŸ’ 𝑼 𝑻 𝑻 Justification 𝐡 β€² + 𝐢 β€² < 2 π‘œ βˆ’ 3 ⟹ 𝑇 = 𝐡 + 𝐢 = 𝐡 β€² + 𝐢′ + 6 < 2 π‘œ + 3 β‰₯ 6 3 3 0 0 0 3 2 π‘œ ≀ 𝐡 β€² + 𝐢 β€² ≀ 2 π‘œ + 2 π‘œ βˆ’ 2 ⟹ 3 ≀ 𝑇 = 𝐡 + 𝐢 2 π‘œ +3 ≀ 2 π‘œ + 1 3 3 0 0 0 3 β‰₯ 3 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 3 ⟹ 𝐡 + 𝐢 = 2 π‘œ + 3, 𝑇 = 𝐡 + 𝐢 2 π‘œ +3 = 0 3 3 0 0 1 0 0 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 2 ⟹ 𝐡 + 𝐢 = 2 π‘œ + 4, 𝑇 = 𝐡 + 𝐢 2 π‘œ +3 = 1 3 3 0 1 0 1 1 𝐡 β€² + 𝐢 β€² = 2 π‘œ βˆ’ 1 ⟹ 𝐡 + 𝐢 = 2 π‘œ + 5, 𝑇 = 𝐡 + 𝐢 2 π‘œ +3 = 2 3 3 1 0 0 2 2 π‘ˆ 𝑇 = 2 𝜊 1 + 𝜊 2 + 3 𝜊 1 𝜊 2 𝜊 3

  13. 13/22 D ERIVATION OF 𝑇′ 𝑇 β€² = 𝐡 β€² + π‘ˆ 𝐡 + 𝐢 β€² + π‘ˆ 𝐢 βˆ’ π‘ˆ 𝑇 2 π‘œ +3 = 𝐡 β€² + 𝐢 β€² + π‘ˆ 𝐡 + π‘ˆ 𝐢 βˆ’ π‘ˆ 𝑇 2 π‘œ +3 β€² + 𝑋 β€² + 𝛆′ 2 π‘œ +3 , 𝛆 β€² = π‘ˆ βˆ’ 3π‘₯ π‘œ 𝑋 β€² + π‘ˆ 2 π‘œ +3 = 𝑋 β€² + π‘ˆ βˆ’ 3π‘₯ π‘œ = 2 π‘œ π‘₯ π‘œ β€² 2 π‘œ +3 = β€² 𝑼 π‘ͺ 0 1 2 3 𝑼 𝑩 0 0 0 0 0 0 0 0 3 𝜊 1 + 1 1 0 0 1 2 𝜊 1 + 3 𝜊 2 + 2 2 0 3 𝜊 1 + 1 2 𝜊 1 + 3 𝜊 2 + 2 𝜊 1 + 2 𝜊 2 + 3 𝜊 3 + 3 3 T HE NOISE TERM π‘ˆ = π‘ˆ 𝐡 + π‘ˆ 𝐢 βˆ’ π‘ˆ 𝑇 IN TERMS OF π‘ˆ 𝐡 , π‘ˆ 𝐢 , AND ΞΎ BITS

  14. 14/22 C OMPOUND RPP REALIZATION OF 𝑻′ β€² Ξ΄ 0 β€² ∈ {0,1,2} Ξ΄ β€² = Ξ΄ 1 β€² + 𝛆′ 𝑿 β€² + π’œπ’™ 𝒐 𝑻′ = πŸ‘ 𝒐 β€² = ΞΎ 1 Ξ± 1 Ξ² 1 Ξ± 0 ⨁β 0 ∨ ΞΎ 1 β€² , Ξ΄ 1 ΞΎ 2 𝑨π‘₯ π‘œ β€² = ΞΎ 1 𝑦 ∨ ΞΎ 2 𝑨 ∨ Ξ± 0 Ξ² 0 Ξ± 1 ⨁β 1 ∨ Ξ± 1 Ξ² 1 Ξ± 0 ∨ Ξ² 0 Ξ΄ 0 𝑨 = Ξ± 1 Ξ² 1 Ξ± 0 Ξ² 0

  15. 15/22 The required RPP circuitry 𝑏 7 𝑐 7 𝑏 6 𝑐 6 𝑏 2 𝑐 2 𝑏 1 𝑐 1 𝑏 0 𝑐 0 𝑏 5 𝑐 5 𝑏 4 𝑐 4 𝑏 3 𝑐 3 ( g , p ) ( g , p ) ( g , p ) ( g , p ) ( g , p ) 𝑣 𝑗 𝑀 𝑗 l l r r l l r r i i HA HA HA HA HA HA HA HA pgh 𝑣 7 𝑀 7 𝑣 6 𝑀 6 𝑣 5 𝑀 5 𝑣 4 𝑀 4 𝑣 3 𝑀 3 𝑣 2 𝑀 2 𝑣 1 𝑀 1 𝑣 0 𝑀 8 οƒš οƒš h ( g , p ) ( g p g , p p ) ( g p g ) ( g , p ) 𝑕 1 , π‘ž 1 i i i l l r l r l l r i i pgh pgh pgh pgh pgh pgh pgh 𝑸 πŸ– : πŸ‘ 𝑸 πŸ– : πŸ‘ (4 Ξ” ) π‘Ÿ 12 π‘Ÿ 02 (3 Ξ” ) (6 Ξ” ) π‘Ÿ 03 𝑸 πŸ– : πŸ‘ 𝑸 πŸ– : πŸ‘ π‘Ÿ 13 (4 Ξ” ) πŸ– + πŸ‘ π’Žπ’‘π’‰ 𝒐 𝜠 π‘Ÿ 01 (4 Ξ” ) 𝑣 0 (4 Ξ” ) 𝑧 π‘Ÿ 11 (5 Ξ” ) Ξ± 1 Ξ² 1 Ξ± 1 Ξ² 0 Ξ± 0 Ξ² 1 Ξ± 0 Ξ² 0 𝑯 πŸ– : πŸ‘ 𝑯 πŸ– : πŸ‘ (3 Ξ” ) 𝑦 (𝒉 πŸ– : πŸ‘ , 𝒒 πŸ– : πŸ‘ ) 𝑯 πŸ– : πŸ‘ 𝑸 πŸ– : πŸ‘ 𝑧 (4 Ξ” ) 𝑑 2 𝑑 6 𝑑 5 𝑑 4 𝑑 3 𝑑 7 𝑑 1 𝑑 0 𝑔 0 (7 Ξ” ) 𝑔 1 (7 Ξ” ) Οƒ 1 Οƒ 0 β€² β€² β€² β€² β€² β€² β€² β€² 𝑑 1 𝑑 0 𝑑 7 𝑑 4 𝑑 2 𝑑 6 𝑑 5 𝑑 3

  16. 16/22 Carry Bits for RPP Architecture β€² ∨ π‘ž 1 β€² ∨ π‘ž 1 β€² 𝐻 π‘œβˆ’1:2 = 𝐻 π‘—βˆ’1:2 ∨ 𝑄 π‘—βˆ’1:2 𝑕 1 β€² 𝐻 π‘œβˆ’1:𝑗 𝑑 𝑗 = 𝐻 π‘—βˆ’1:2 ∨ 𝑄 π‘—βˆ’1:2 𝑑 2 = 𝐻 π‘—βˆ’1:2 ∨ 𝑄 π‘—βˆ’1:2 𝑕 1 β€² ∨ π‘ž 1 β€² ∘ 𝐻 7:2 , 1 β€² 𝐻 7:2 , 𝑕 1 β€² , π‘ž 1 𝑑 2 = 𝑕 1 β€² ∨ π‘ž 1 β€² ∘ 𝐻 7:3 , 1 β€² 𝐻 7:3 , 𝑕 2 , π‘ž 2 ∘ 𝑕 1 β€² , π‘ž 1 𝑑 3 = 𝑕 2 ∨ π‘ž 2 𝑕 1 β€² ∨ π‘ž 1 β€² 𝐻 7:4 , (𝐻, 𝑄) 3:2 ∘ (𝑕 1 β€² , π‘ž 1 β€² ) ∘ 𝐻 7:4 , 1 𝑑 4 = 𝐻 3:2 ∨ 𝑄 3:2 𝑕 1 β€² ∨ π‘ž 1 β€² 𝐻 7:5 , 𝐻, 𝑄 4:2 ∘ (𝑕 1 β€² , π‘ž 1 β€² ) ∘ 𝐻 7:5 , 1 𝑑 5 = 𝐻 4:2 ∨ 𝑄 4:2 𝑕 1 β€² ∨ π‘ž 1 β€² 𝐻 7:6 , 𝐻, 𝑄 5:2 ∘ (𝑕 1 β€² , π‘ž 1 β€² ) ∘ 𝐻 7:6 , 1 𝑑 6 = 𝐻 5:2 ∨ 𝑄 5:2 𝑕 1 β€² ∨ π‘ž 1 β€² 𝑕 7 , 𝐻, 𝑄 6:2 ∘ (𝑕 1 β€² , π‘ž 1 β€² ) ∘ 𝑕 7 , 1 𝑑 7 = 𝐻 6:2 ∨ 𝑄 6:2 𝑕 1

Recommend


More recommend