modelling results on
play

Modelling results on New Generation Solar Cooling systems Chiara - PowerPoint PPT Presentation

Modelling results on New Generation Solar Cooling systems Chiara Dipasquale INTRODUCTION 4 examples of new generation solar cooling systems: Building description and solar cooling plant layout; Working modes and characteristics of


  1. Modelling results on New Generation Solar Cooling systems Chiara Dipasquale

  2. INTRODUCTION 4 examples of new generation solar cooling systems: • Building description and solar cooling plant layout; • Working modes and characteristics of system components; • Operational modes and system size variants, and results. 2 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  3. CASE 1 Building description Reference Single Family House - SFH Reference Small Multi Family House - sMFH Number of floors 5 Number of floors 2 Living area per dwelling 50 m² Living area per floor 50 m² Number dwelling per floor 2 Yearly heating demand 45 kWh/(m²y) Yearly heating demand 45 kWh/(m²y) 3 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  4. CASE 1 Solar cooling plant layout 2 • Use of solar thermal energy for DHW production and space heating T6.1 1 • Use of PV energy for the HVAC PV_PHOTOVOLTAIC system electricity consumption STC_SOLAR THERMAL 4 COLLECTORS 6 T5.4 T1.3 DHW 3 T5.2 GENERATION DEVICE 1. Solar thermal collectors 7 2. PV panels TES_THERMAL T5.5 ENERGY STORAGE 3. Air-to-water heat pump DISTRIBUTION 4. Storage tank DEVICES T5.6 5. Buffer 5 6. DHW distribution circuit BUF_BUFFER HJ_HYDRAULIC JUNCTION 7. H&C Distribution circuit 4 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  5. CASE 1 Working conditions TES charging by solar energy T6.1 C6 C2 PM1_1 PV_PHOTOVOLTAIC C1 C5 HX_1 PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 T1.3 VM2_3 T5.3 C1 C5 VM_2 0 C1 1 C5 200 l 1 0 C2 C6 DHW HX_2 1 T5.2 TES_SNS2 VM2_2 C3 C2 C6 0 C5 1 VD_1 PM2_3 C3 out 0 C4 TES_SNS3 A/W HEAT PUMP TES_SNS5 VM1_6 TES_THERMAL T5.5 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 C2 VM VM1_7 T5.6 1 C1 BUF_SNS5 C5 C1 0 C2 C6 BUF_BUFFER PM1_6 HJ_HYDRAULIC JUNCTION 5 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  6. CASE 1 Working conditions TES charging by heat pump T6.1 C6 C2 PM1_1 C1 PV_PHOTOVOLTAIC C5 HX_1 PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 VM2_3 T1.3 T5.3 C1 C5 VM_2 0 1 C1 C5 200 l 1 0 C2 C6 DHW HX_2 1 T5.2 VM2_2 TES_SNS2 C3 C2 C6 0 C5 1 VD_1 PM2_3 0 C3 out C4 TES_SNS3 A/W HEAT PUMP TES_SNS5 VM1_6 T5.5 TES_THERMAL 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 C2 VM VM1_7 T5.6 1 C1 BUF_SNS5 C5 C1 0 C6 BUF_BUFFER C2 PM1_6 HJ_HYDRAULIC JUNCTION 6 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  7. CASE 1 Working conditions Buffer charging by heat pump T6.1 C6 C2 PM1_1 C1 PV_PHOTOVOLTAIC C5 HX_1 PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 VM2_3 T5.3 T1.3 C1 C5 VM_2 0 C1 1 C5 200 l 1 0 C2 C6 DHW HX_2 1 T5.2 VM2_2 TES_SNS2 C3 C2 C6 0 C5 1 VD_1 PM2_3 0 C3 out C4 TES_SNS3 A/W HEAT PUMP TES_SNS5 VM1_6 T5.5 TES_THERMAL 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 EH6 C2 VM VM1_7 T5.6 1 C1 BUF_SNS5 C5 C1 0 C6 BUF_BUFFER C2 PM1_6 HJ_HYDRAULIC JUNCTION 7 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  8. CASE 1 Working conditions Buffer charging by solar energy T6.1 C6 C2 PM1_1 PV_PHOTOVOLTAIC C1 C5 HX_1 PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 T1.3 VM2_3 T5.3 VM_2 C1 C5 0 C1 1 C5 200 l 1 0 C2 C6 DHW HX_2 1 T5.2 TES_SNS2 VM2_2 C3 C2 C6 0 C5 1 VD_1 PM2_3 0 C3 out C4 TES_SNS3 A/W HEAT PUMP TES_SNS5 VM1_6 TES_THERMAL T5.5 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 C2 VM VM1_7 T5.6 1 C1 BUF_SNS5 C5 C1 0 C2 C6 BUF_BUFFER PM1_6 HJ_HYDRAULIC JUNCTION 8 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  9. CASE 1 Working conditions DHW distribution T6.1 C6 C2 PM1_1 C1 C5 HX_1 PV_PHOTOVOLTAIC PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 T1.3 VM2_3 VM_2 C1 C5 0 C1 1 C5 200 l 1 0 C2 C6 DHW HX_2 TES_SNS2 1 T5.2 VM2_2 0 C2 C6 1 C3 VD_1 C5 C3 out C4 TES_SNS3 PM2_3 0 A/W HEAT PUMP TES_SNS5 VM1_6 TES_THERMAL T5.5 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 C2 VM1_7 T5.6 1 C5 C1 C1 0 C2 C6 BUF_BUFFER PM1_6 HJ_HYDRAULIC JUNCTION 9 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  10. T6.1 PV_PHOTOVOLTAIC STC_SOLAR THERMAL COLLECTORS T5.4 T1.3 DHW T5.2 RESULTS – CASE 1 GENERATION DEVICE TES_THERMAL T5.5 ENERGY STORAGE DISTRIBUTION DEVICES T5.6 ST and PV performance with varying field size and tilt angle BUF_BUFFER HJ_HYDRAULIC JUNCTION Solar Thermal Solar Thermal Collectors - s-MFH Unit s-MFH 40% 700 STC_1 m² 18.4 Stagnation number hours [h] 35% 600 STC_2 m² 27.6 Solar Fraction [%] 30% 500 STC_3 m² 36.8 25% 400 20% 300 15% 200 10% 100 5% 0% 0 30° 90° 30° 90° STC_1 STC_1 STC_3 STC_3 SF_ROM SF_STO Hour_ROM Hour_STO ROM – Rome Solar Fraction and stagnation hours referred STO - Stockholm to the total heating production ( space heating + DHW ) 10 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  11. T6.1 PV_PHOTOVOLTAIC STC_SOLAR THERMAL COLLECTORS T5.4 T1.3 DHW T5.2 RESULTS – CASE 1 GENERATION DEVICE TES_THERMAL T5.5 ENERGY STORAGE DISTRIBUTION DEVICES T5.6 ST and PV performance with varying field size and tilt angle BUF_BUFFER HJ_HYDRAULIC JUNCTION Solar Thermal PV production - s-MFH Solar Thermal Collectors - s-MFH Unit s-MFH 10000 40% 700 STC_1 m² 18.4 Stagnation number hours [h] 8000 35% 600 Energy [kWh] STC_2 m² 27.6 Solar Fraction [%] 30% 500 6000 STC_3 m² 36.8 25% 400 4000 20% 300 15% Photovoltaic 2000 200 10% Unit s-MFH 100 5% 0 PV_1 kWp 3 0% 0 30° 90° 30° 90° 30° 90° 30° 90° PV_2 kWp 4 30° 90° 30° 90° ROM_3 kW ROM_5 kW STO_3 kW STO_5 kW PV_3 kWp 5 STC_1 STC_1 STC_3 STC_3 PV self HVAC PV self other PV to the grid SF_ROM SF_STO Hour_ROM Hour_STO ROM – Rome Solar Fraction and stagnation hours referred PV production and self-consumption for two STO - Stockholm to the total heating production ( space heating different fields size and panel slope + DHW ) 11 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  12. T6.1 PV_PHOTOVOLTAIC STC_SOLAR THERMAL COLLECTORS T5.4 T1.3 DHW T5.2 RESULTS – CASE 1 GENERATION DEVICE TES_THERMAL T5.5 ENERGY STORAGE DISTRIBUTION DEVICES T5.6 ST and PV performance for different sizes and slopes BUF_BUFFER HJ_HYDRAULIC JUNCTION ROM – Rome STO – Stockholm Electricity consumption - s-MFH 40 35 20% 23% Final Energy [kWh/(m²y)] 30 14% 14% • Slightly higher energy savings in Southern 25 20 climates due to higher cooling loads 15 • Same energy savings for a solar thermal 10 (STC) or photovoltaic (PV) field in Northern 5 climates 0 NO_ST_PV STC_2 PV_1 NO_ST_PV STC_2 PV_1 ROME STOCKHOLM Comparison of similar field areas of STC ( 27 m² ) or PV ( 24 m² ) in terms of electric energy savings for DHW, heating and cooling uses 12 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  13. CASE 2 Building description Wooden Residential Building (WRB) Number of floors 2 Living area per floor 130 m² 13 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  14. CASE 2 Solar cooling plant layout • Adsorption chiller for space cooling; • Solar collectors (CPC) for heating and DHW demands • Heat rejection through dry-cooler. 1. Compound Parabolic Collectors (CPC) 2. Storage tank – 1000 l 3. Electric Heater 4. Adsorption chiller – 10 kW 5. Dry cooler 6. Fan coil 14 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  15. CASE 2 Working conditions Running the solar system 15 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  16. CASE 2 Working conditions Space cooling mode < 16 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  17. CASE 2 Working conditions Running the back-up heater 17 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  18. CASE 2 Working conditions Domestic Hot Water and space heating 18 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  19. RESULTS – CASE 2 Absorption chiller in different climates # solar SPF heating SPF cooling SF total PER total collectors [-] [-] [%] [-] Freiburg 6 6.7 5.2 51% 1.2 • The highest SF is in Marseille where Stuttgart 6 9.5 7.9 56% 1.3 heating and cooling demands are similar; Marseille 6 11.6 9.6 92% 1.9 Messina 8 14.8 12.3 67% 2 Luca 8 14.3 13.0 66% 2 Athens 8 10.4 10.9 69% 2.4 Barcelona 8 12.9 11.7 73% 2.4 Almeria 8 10.7 11.8 66% 1.9 Larnaca 10 11.9 12.7 63% 2.1 19 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

Recommend


More recommend