modeling in molecular biology
play

Modeling in Molecular Biology Peter Schuster Institut fr - PowerPoint PPT Presentation

Modeling in Molecular Biology Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria, and The Santa Fe Institute, Santa Fe, New Mexico, USA Third GEN-AU Summer School: Ultra-Sensitive Proteomics and Genomics Litschau,


  1. • • • • • • • • • • • • Formation of a scale-free network through evolutionary point by point expansion: Step 011

  2. • • • • • • • • • • • • • Formation of a scale-free network through evolutionary point by point expansion: Step 012

  3. • • • • • • • • • • • • • • • • • • • • • • • • • Formation of a scale-free network through evolutionary point by point expansion: Step 024

  4. • • 2 2 2 • 2 • • • 2 3 • 3 • • 3 3 links # nodes • • 2 14 • 2 14 2 • 10 3 6 • • 5 5 2 2 • 2 10 1 • 5 12 1 • 12 • • 14 1 3 • 2 3 • • • • 2 2 2 2 Analysis of nodes and links in a step by step evolved network

  5. A B C D E F G H I J K L Biochemical Pathways 1 2 3 4 5 6 7 8 9 10 The reaction network of cellular metabolism published by Boehringer-Ingelheim.

  6. The citric acid or Krebs cycle (enlarged from previous slide).

  7. Kinetic differential equations d x = = = f x k x x x k k k ( ; ) ; ( , , ) ; ( , , ) K K 1 n 1 m d t Reaction diffusion equations ∂ x = ∇ + D 2 x f x k ( ; ) Solution curves : ( ) x t ∂ t x i (t) Concentration Parameter set = k ( T , p , p H , I , ) ; j 1 , 2 , , m K K j General conditions : T , p , pH , I , ... t x ( 0 ) Initial conditions : Time Boundary conditions : � boundary ... S , normal unit vector ... u x S = Dirichlet : g ( r , t ) ∂ x S = = ⋅ ∇ ˆ Neumann : u x g ( r , t ) ∂ u The forward problem of chemical reaction kinetics (Level I)

  8. Kinetic differential equations d x = = = f ( x ; k ) ; x ( x , , x ) ; k ( k , , k ) K K 1 n 1 m d t Reaction diffusion equations ∂ x 2 = ∇ + Genome: Sequence I G D x f ( x ; k ) Solution curves : x t ( ) ∂ t x i (t) Concentration Parameter set = ( G I ; , , , , ) ; 1 , 2 , , k j T p p H I j m K K General conditions : T , p , pH , I , ... t x ( 0 ) Initial conditions : Time Boundary conditions : boundary ... S , normal unit vector � ... u x S = Dirichlet : g ( r , t ) ∂ x S = = ⋅ ∇ ˆ u x g ( r , t ) Neumann : ∂ u The forward problem of cellular reaction kinetics (Level I)

  9. Kinetic differential equations d x = = = f ( x ; k ) ; x ( x , , x ) ; k ( k , , k ) K K 1 n 1 m d t Reaction diffusion equations ∂ x = ∇ + 2 ( ; ) D x f x k ∂ t General conditions : T , p , pH , I , ... x ( 0 ) Initial conditions : Genome: Sequence I G Boundary conditions : boundary ... S , normal unit vector � ... u Parameter set x S = = Dirichlet : g ( r , t ) k j ( G I ; T , p , p H , I , ) ; j 1 , 2 , , m K K ∂ x S = = ⋅ ∇ Neumann : ˆ u x g ( r , t ) ∂ u Data from measurements x (t ); = 1, 2, ... , j N j x i (t ) j Concentration The inverse problem of cellular t reaction kinetics (Level I) Time

  10. The forward problem of bifurcation analysis in cellular dynamics (Level II)

  11. The inverse problem of bifurcation analysis in cellular dynamics (Level II)

  12. A model genome with 12 genes 1 2 3 4 5 6 7 8 9 10 11 12 Regulatory protein or RNA Regulatory gene Enzyme Structural gene Metabolite Sketch of a genetic and metabolic network

  13. A + B � X Stoichiometric equations 2 X � Y Sequences Y + X � D Vienna RNA Package SBML – systems biology markup language d a d b Structures and kinetic = = − k a b 1 d t d t parameters Kinetic differential equations d x = − − 2 k a b k x k x y 1 2 3 d t d y = 2 − k x k x y ODE Integration by means of CVODE 2 3 d t d d = k x y 3 d t Solution curves x i (t) Concentration t Time The elements of the simulation tool MiniCellSim SBML : Bioinformatics 19 :524-531, 2003; CVODE : Computers in Physics 10 :138-143, 1996

  14. ATGCCTTATACGGCAGTCAGGTGCACCATT...GGC genotype DNA string TACGGAATATGCCGTCAGTCCACGTGGTAA...CCG genotype-p h e not y p mapping e RNA m RNA genetic regulation network RNA and protein structures Protein enzymes and small Metabolism metabolic reaction network molecules transport system cell membrane Recycling of molecules environment nutrition waste The regulatory logic of MiniCellSym

  15. The model regulatory gene in MiniCellSim

  16. The model structural gene in MiniCellSim

  17. Neurobiology Neural networks, collective properties, nonlinear dynamics, signalling, ... A single neuron signaling to a muscle fiber

  18. The human brain 10 11 neurons connected by � 10 13 to 10 14 synapses

  19. B A Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  20. Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  21. Christof Koch, Biophysics of Computation. Information Processing in single neurons. Oxford University Press, New York 1999.

  22. Neurobiology Neural networks, collective properties, nonlinear dynamics, signalling, ... d V 1 = − − − − − − 3 4 I g m h ( V V ) g n ( V V ) g ( V V ) Na Na K K l l d t C M dm = α − − β Hogdkin-Huxley OD equations ( 1 m ) m m m dt dh = α − − β ( 1 h ) h h h dt dn = α − − β ( 1 n ) n n n dt A single neuron signaling to a muscle fiber

  23. Gating functions of the Hodgkin-Huxley equations

  24. Temperature dependence of the Hodgkin-Huxley equations

  25. d V 1 = − − − − − − 3 4 I g m h ( V V ) g n ( V V ) g ( V V ) Na Na K K l l d t C M dm = α − − β ( 1 m ) m m m dt dh = α − − β ( 1 h ) h h h dt dn = α − − β ( 1 n ) n n n dt Hogdkin-Huxley OD equations Hhsim.lnk Simulation of space independent Hodgkin-Huxley equations: Voltage clamp and constant current

  26. ∂ ∂ 2 1 V V = + − + − + − π 3 4 C [ g m h ( V V ) g n ( V V ) g ( V V ) ] 2 r L Na Na K K l l ∂ ∂ 2 R x t ∂ m = − − α ( 1 m ) β m m m ∂ t ∂ h = − − α ( 1 h ) β h Hodgkin-Huxley partial differential equations (PDE) h h ∂ t ∂ n = − − α ( 1 n ) β n n n ∂ t Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  27. ∂ ∂ 2 1 V V = + − + − + − π 3 4 C θ [ g m h ( V V ) g n ( V V ) g ( V V ) ] 2 r L M Na Na K K l l ∂ ξ ∂ ξ 2 R ∂ m = − − θ α ( 1 m ) β m m m ∂ ξ Hodgkin-Huxley ordinary differential equations ∂ h (ODE) = − − θ α ( 1 h ) β h h h ∂ ξ ∂ n Travelling pulse solution: V ( x,t ) = V ( � ) with = − − θ α ( 1 n ) β n n n ∂ ξ � = x + � t Hodgkin-Huxley equations describing pulse propagation along nerve fibers

  28. 100 50 ] V m [ V 0 -50 1 2 3 4 5 6 � [cm] T = 18.5 C; θ = 1873.33 cm / sec

  29. T = 18.5 C; θ = 1873.3324514717698 cm / sec

  30. T = 18.5 C; θ = 1873.3324514717697 cm / sec

  31. 40 30 20 ] V m [ 10 V 0 -10 6 8 10 12 14 16 18 � [cm] T = 18.5 C; θ = 544.070 cm / sec

  32. T = 18.5 C; θ = 554.070286919319 cm/sec

  33. T = 18.5 C; θ = 554.070286919320 cm/sec

  34. Propagating wave solutions of the Hodgkin-Huxley equations

  35. ∂ ∂ 2 1 V V = + + − − + − + − π 3 4 C θ [ g m ( h n n ) ( V V ) g n ( V V ) g ( V V ) ] 2 r L M Na 0 0 Na K K l l ∂ ξ ∂ ξ 2 R ∂ m = − − θ α ( 1 m ) β m Hodgkin-Huxley ordinary differential equations m m ∂ ξ (ODE) ∂ n = − − θ α ( 1 n ) β n n n ∂ ξ Travelling pulse solution: V ( x,t ) = V ( � ) with � = x + � t V = + β = − ≈ − α α ; 0 . 125 exp ( ) 0 . 125 ( 1 V ) V n 0 n 80 80 E Na An approximation to the Hodgkin-Huxley equations

  36. Propagating wave solutions of approximations to the Hodgkin-Huxley equations

  37. Evolutionary biology Optimization through variation and selection, relation between genotype, phenotype, and function, ... Selection and Genetic drift in Genetic drift in Generation time adaptation small populations large populations 10 6 generations 10 7 generations 10 000 generations RNA molecules 10 sec 27.8 h = 1.16 d 115.7 d 3.17 a 1 min 6.94 d 1.90 a 19.01 a Bacteria 20 min 138.9 d 38.03 a 380 a 10 h 11.40 a 1 140 a 11 408 a Multicelluar organisms 10 d 274 a 27 380 a 273 800 a 2 × 10 7 a 2 × 10 8 a 20 a 200 000 a Time scales of evolutionary change

  38. Genotype = Genome Mutation GGCUAUCGUACGUUUACCCAAAAAGUCUACGUUGGACCCAGGCAUUGGAC.......G Fitness in reproduction: Unfolding of the genotype: Number of genotypes in RNA structure formation the next generation Phenotype Selection Evolution of phenotypes

  39. I 1 I j + Σ Φ dx / dt = f Q ji x - x f j Q j1 i j j j i I j I 2 + Σ i Φ = Σ ; Σ = 1 ; f x x Q ij = 1 j j i j j � i =1,2,...,n ; f j Q j2 [Ii] = xi 0 ; I i I j + [A] = a = constant f j Q ji l -d(i,j) d(i,j) I j (A) + I j Q = (1- ) p p + I j ij f j Q jj p .......... Error rate per digit l ........... Chain length of the f j Q jn polynucleotide I j d(i,j) .... Hamming distance I n + between Ii and Ij Chemical kinetics of replication and mutation as parallel reactions

  40. Mutation-selection equation : [I i ] = x i � 0, f i > 0, Q ij � 0 dx ∑ ∑ ∑ n n n = − φ = = φ = = i f Q x x , i 1 , 2 , , n ; x 1 ; f x f L j ji j i i j j = = = dt j 1 i 1 j 1 Solutions are obtained after integrating factor transformation by means of an eigenvalue problem ( ) ( ) ∑ − n 1 ⋅ ⋅ λ c 0 exp t l ( ) ∑ n ik k k = = = = x t k 0 ; i 1 , 2 , , n ; c ( 0 ) h x ( 0 ) L ( ) ( ) ∑ ∑ i − k ki i n n 1 = i 1 ⋅ ⋅ λ c 0 exp t l jk k k = = j 1 k 0 { } { } { } ÷ = = = − = = = 1 W f Q ; i , j 1 , 2 , , n ; L ; i , j 1 , 2 , , n ; L H h ; i , j 1 , 2 , , n L l L L i ij ij ij { } − ⋅ ⋅ = Λ = λ = − 1 L W L ; k 0 , 1 , , n 1 L k

  41. Formation of a quasispecies in sequence space

  42. Formation of a quasispecies in sequence space

  43. Formation of a quasispecies in sequence space

  44. Formation of a quasispecies in sequence space

  45. Uniform distribution in sequence space

  46. Quasispecies Uniform distribution 0.00 0.05 0.10 Error rate p = 1-q Quasispecies as a function of the replication accuracy q

  47. Chain length and error threshold ⋅ σ = − ⋅ σ ≥ ⇒ ⋅ − ≥ − σ n Q ( 1 p ) 1 n ln ( 1 p ) ln σ ln ≈ p constant : n K max p σ ln ≈ n constant : p K max n = − n Q ( 1 p ) replicatio n accuracy K p error rate K n chain length K f = σ m superiorit y of master sequence K ∑ ≠ f j j m

  48. Reaction Mixture Stock Solution Replication rate constant: f k = � / [ � + � d S (k) ] � d S (k) = d H (S k ,S � ) Selection constraint: # RNA molecules is controlled by the flow ≈ ± N ( t ) N N The flowreactor as a device for studies of evolution in vitro and in silico

  49. Randomly chosen Phenylalanyl-tRNA as initial structure target structure

Recommend


More recommend