modeling environmental effects on directionality in
play

Modeling Environmental Effects on Directionality in Wireless - PowerPoint PPT Presentation

Modeling Environmental Effects on Directionality in Wireless Networks Eric Anderson, Caleb Phillips, Douglas Sicker, and Dirk Grunwald eric.anderson@colorado.edu University of Colorado Department of Computer Science 26 June 2009 Eric


  1. Modeling Environmental Effects on Directionality in Wireless Networks Eric Anderson, Caleb Phillips, Douglas Sicker, and Dirk Grunwald eric.anderson@colorado.edu University of Colorado Department of Computer Science 26 June 2009 � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 1 / 22

  2. Outline Radio Propagation Environments and Directional Antennas 1 Pretty Pictures Measuring Effective Directionality Accuracy of Current Models Estimating Radio Propagation 2 Ray Tracing Propagation Models Directivity Models Directivity and Propagation are not Orthogonal 3 What’s Missing? Modeling 4 Fitting Specific Environments Fitting Types of Environments Relating Signals to Environment Parameters � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 2 / 22

  3. RF Propagation Environments � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 3 / 22

  4. RF Propagation Environments � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 3 / 22

  5. Measurement Processes [1/2] Baseline Measurements Calibration and test quality equipment (Agilent E4438C, 89600S VSG and VSA) used for: Reference pattern Calibrating laptop measurements. � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 4 / 22

  6. Measurement Processes [2/2] Linear fit for RSS Error −20 Laptop Measurements −40 Dell laptops Rx dBm Atheros AR5213 −60 radios Used for −80 non-reference measurements. −80 −60 −40 −20 Tx dBm Linear fit, slope ≈ 0 . 95 Adjusted R 2 = 0 . 989 � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 5 / 22

  7. How Bad is it? Patch−Panel Antenna 10 0 dB Relative to Peak Mean −10 −20 −30 −40 Patch−Outdoor−B Patch−Outdoor−A Patch−Indoor−A −50 Reference 0 25 50 75 105 140 175 210 245 280 315 350 Angle, Degrees Counterclockwise � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 6 / 22

  8. How Bad is it? Patch−Panel Antenna 10 0 dB Relative to Peak Mean −10 −20 ≥ 15 dB −30 −40 Patch−Outdoor−B Patch−Outdoor−A Patch−Indoor−A −50 Reference 0 25 50 75 105 140 175 210 245 280 315 350 Angle, Degrees Counterclockwise � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 6 / 22

  9. How Bad Is It? 24dBi Parabolic Dish, Indoors 10 0 dB Relative to Peak Mean −10 −20 ≥ 35 dB −30 −40 Parabolic−Indoor−C Parabolic−Indoor−B Parabolic−Indoor−A −50 Reference 0 21 50 76 106 140 171 205 236 270 301 335 Angle, Degrees Counterclockwise � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 7 / 22

  10. Outline Radio Propagation Environments and Directional Antennas 1 Pretty Pictures Measuring Effective Directionality Accuracy of Current Models Estimating Radio Propagation 2 Ray Tracing Propagation Models Directivity Models Directivity and Propagation are not Orthogonal 3 What’s Missing? Modeling 4 Fitting Specific Environments Fitting Types of Environments Relating Signals to Environment Parameters � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 8 / 22

  11. Radio Ray Tracing � �� �� f a ( θ 1 ) f b ( θ 2 ) d − 2 P rx = P tx � 1 � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 9 / 22

  12. Radio Ray Tracing � �� �� f a ( θ 1 ) f b ( θ 2 ) d − 2 + f a ( θ 3 ) f b ( θ 4 ) d − 2 P rx = P tx 2 A 2 “two-ray” � 1 � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 9 / 22

  13. Radio Ray Tracing � �� �� f a ( θ 1 ) f b ( θ 2 ) d − 2 + f a ( θ 3 ) f b ( θ 4 ) d − 2 2 A 2 + f a ( θ 5 ) f b ( θ 6 ) d − 2 P rx = P tx 3 A 3 � 1 � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 9 / 22

  14. Radio Ray Tracing � �� �� f a ( θ 1 ) f b ( θ 2 ) d − 2 + f a ( θ 3 ) f b ( θ 4 ) d − 2 2 A 2 + f a ( θ 5 ) f b ( θ 6 ) d − 2 P rx = P tx 3 A 3 · · · � 1 � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 9 / 22

  15. Path Loss Path loss: Macro-scale function of position & terrain. e.g. Free space, two-ray, HATA/COST231, ITU238, . . . � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 10 / 22

  16. Fading Frequency Time [Credit: Public domain image from Wikimedia commons] Fading: Micro-scale function of many positions and velocities. Treated as function of time. � e.g. Rayleigh, Rician, Weibull, . . . Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 11 / 22

  17. Directivity – Current Models Fading & path loss Node a gain Node b gain P rx = P tx ∗ X ∗ f a ( θ 1 ) ∗ f b ( θ 2 ) � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 12 / 22

  18. Directivity – Current Models Fading & path loss Node a gain Node b gain P rx = P tx ∗ X ∗ f a ( θ 1 ) ∗ f b ( θ 2 ) � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 12 / 22

  19. Directivity – Current Models Fading & path loss Node a gain Node b gain P rx = P tx ∗ X ∗ f a ( θ 1 ) ∗ f b ( θ 2 ) � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 12 / 22

  20. Directivity – Current Models Fading & path loss Node a gain Node b gain P rx = P tx ∗ X ∗ f a ( θ 1 ) ∗ f b ( θ 2 ) � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 12 / 22

  21. Outline Radio Propagation Environments and Directional Antennas 1 Pretty Pictures Measuring Effective Directionality Accuracy of Current Models Estimating Radio Propagation 2 Ray Tracing Propagation Models Directivity Models Directivity and Propagation are not Orthogonal 3 What’s Missing? Modeling 4 Fitting Specific Environments Fitting Types of Environments Relating Signals to Environment Parameters � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 13 / 22

  22. Directivity – What’s Missing? Some f(position) ∗ Some f(time) � �� � + P rx = P tx ∗ X ∗ f a ( θ 1 ) ∗ f b ( θ 2 ) vs. Frequency � �   f a ( θ 1 ) ∗ f b ( θ 2 ) ∗ d − 2 + � � 1 � � �   � f a ( θ 3 ) ∗ f b ( θ 4 ) ∗ d − 2 ∗ A 2 + Time �   � 2 P rx = P tx ∗ �   � + f a ( θ 5 ) ∗ f b ( θ 6 ) ∗ d − 2 �   � ∗ A 3 + �  3  � � � · · · � � = ? � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 14 / 22

  23. Directivity – What’s Missing? Some f(position) ∗ Some f(time) � �� � + P rx = P tx ∗ X ∗ f a ( θ 1 ) ∗ f b ( θ 2 ) vs. Frequency � �   f a ( θ 1 ) ∗ f b ( θ 2 ) ∗ d − 2 + � � 1 � � �   � f a ( θ 3 ) ∗ f b ( θ 4 ) ∗ d − 2 ∗ A 2 + Time �   � 2 P rx = P tx ∗ �   � + f a ( θ 5 ) ∗ f b ( θ 6 ) ∗ d − 2 �   � ∗ A 3 + �  3  � � � · · · � � = ? � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 14 / 22

  24. Directivity – What’s Missing? Some f(position) ∗ Some f(time) � �� � + P rx = P tx ∗ X ∗ f a ( θ 1 ) ∗ f b ( θ 2 ) vs. Frequency � �   f a ( θ 1 ) ∗ f b ( θ 2 ) ∗ d − 2 + � � 1 � � �   � f a ( θ 3 ) ∗ f b ( θ 4 ) ∗ d − 2 ∗ A 2 + Time �   � 2 P rx = P tx ∗ �   � + f a ( θ 5 ) ∗ f b ( θ 6 ) ∗ d − 2 �   � ∗ A 3 + �  3  � � � · · · � � Antenna gain in “off” directions is ignored! = ? � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 14 / 22

  25. An Obvious Problem �������������������������������������������� �������������������������������������������� �������������������������������������������� �������������������������������������������� �������������������������������������������� �������������������������������������������� � Eric Anderson (CU Boulder) Modeling Environmental Effects . . . WiNMee ’09 15 / 22

Recommend


More recommend