model risk in claims reserving within tweedie s compound
play

Model risk in claims reserving within Tweedie's compound Poisson - PowerPoint PPT Presentation

Model risk in claims reserving within Tweedie's compound Poisson models Dr Pavel V. Shevchenko Principal Research Scientist, Team leader CSIRO Division of Mathematical and Information Sciences Quantitative Risk Management group, Sydney,


  1. Model risk in claims reserving within Tweedie's compound Poisson models Dr Pavel V. Shevchenko Principal Research Scientist, Team leader CSIRO Division of Mathematical and Information Sciences Quantitative Risk Management group, Sydney, Australia E- -mail: mail: Pavel.Shevchenko@csiro.au Pavel.Shevchenko@csiro.au www.cmis.csiro.au/Pavel.Shevchenko E www.cmis.csiro.au/Pavel.Shevchenko Gareth Peters (UNSW/CSIRO), Pavel Shevchenko (CSIRO), and Mario Wüthrich (ETH). Model risk in claims reserving within Tweedie's compound Poisson models , preprint 2008. ASTIN Colloquium, Manchester, UK, July 2008 ASTIN Colloquium, Manchester, UK, July 2008 www.cmis.csiro.au

  2. Commonwealth Scientific and Industrial Research Organization of Australia ( CSIRO ) – national research agency formed in 1926. Approx 6500 staff (Divisions: Industrial Physics, Minerals, Mathematical&Information Sciences, Marine and Atmospheric Research, etc.) www.csiro.au Division of Mathematical and Information Sciences ( CMIS ) (over 100 researchers): Decision Technology, Biotechnology and Health Informatics, Environmental Informatics www.cmis.csiro.au Quantitative Risk Management ( QRM ) group (approx. 20 staff): financial risk, infrastructure, environment risk, security, air- transport). Financial Risk – operational risk, credit risk, market risk, option pricing, insurance – validation, consulting, model and software development, www.cmis.csiro.au/QRM www.cmis.csiro.au

  3. Claims Reserving (non-life insurance), solvency requirements, claims development triangle (real data) www.cmis.csiro.au

  4. Content � Tweedie’s compound Poisson family to model annual claims � Process Uncertainty, Parameter Estimation Error, Model uncertainty � Variable selection � Maximum likelihood and Bayesian estimation � MCMC (random walk Metropolis-Hastings within Gibbs) � Analysis/Conclusions www.cmis.csiro.au

  5. - predictor for and estimator for Mean Square Error of Prediction “best estimate” of reserve Bayesian context – variance decomposition is model parameter vector modelled as random variable www.cmis.csiro.au

  6. Tweedie’s compound Poisson model www.cmis.csiro.au

  7. Tweedie’s compound Poisson: exponential dispersion family representation www.cmis.csiro.au

  8. Tweedie’s compound Poisson model: final representation www.cmis.csiro.au

  9. www.cmis.csiro.au Parameter estimation: Model assumptions:

  10. Likelihood function www.cmis.csiro.au

  11. www.cmis.csiro.au

  12. Maximum likelihood: process and estimation errors www.cmis.csiro.au

  13. Bayesian inference www.cmis.csiro.au

  14. Bayesian inference estimates Note, model error is incorporated via averaging over values of p www.cmis.csiro.au

  15. Random Walk Metropolis Hastings (RW-MH) within Gibbs Note : normalization constant in posterior is not needed; optimal acceptance rate is 0.234 www.cmis.csiro.au

  16. www.cmis.csiro.au

  17. www.cmis.csiro.au

  18. www.cmis.csiro.au

  19. www.cmis.csiro.au

  20. www.cmis.csiro.au

  21. www.cmis.csiro.au Full predictive distribution

  22. www.cmis.csiro.au Variable selection models

  23. Variable selection models www.cmis.csiro.au

  24. www.cmis.csiro.au Variable selection models

  25. www.cmis.csiro.au Claims reserves

  26. www.cmis.csiro.au

  27. www.cmis.csiro.au

  28. Results: average over p Results: conditioning on p www.cmis.csiro.au

  29. Conclusions � Development of a Bayesian model for claims reserving under Tweedie’s compound Poisson model covering range between Poisson and Gamma models � Quantification process, estimation and model uncertainties and variable selection using MCMC (random walk Metropolis-Hastings within Gibbs) � MLEs are materially different from Bayesian estimators – posterior distributions are different from Gaussian. Future work: variable selection problem – Reversible Jump MCMC; considering model parameter p outside the (1, 2) range; dynamic model. www.cmis.csiro.au

  30. Pavel Shevchenko Principal Research Scientist CSIRO Mathematical & Information Sciences Email: Pavel.Shevchenko@csiro.au www.cmis.csiro.au/Pavel.Shevchenko Thank you www.cmis.csiro.au

Recommend


More recommend