model predictions for the c sos oil shale process
play

Model Predictions for the C-SOS Oil Shale Process L Douglas Smoot, - PowerPoint PPT Presentation

Model Predictions for the C-SOS Oil Shale Process L Douglas Smoot, Robert E Jackson, Ambar M Ochoa Combustion Resources Inc., Provo, UT 30 th International Oil Shale Symposium Golden Colorado, 18-22 October 2010 Acknowledgements n Department


  1. Model Predictions for the C-SOS Oil Shale Process L Douglas Smoot, Robert E Jackson, Ambar M Ochoa Combustion Resources Inc., Provo, UT 30 th International Oil Shale Symposium Golden Colorado, 18-22 October 2010

  2. Acknowledgements n Department of Energy/SBIR n Phase II Contract n Chandra M. Nautiyal, Project Officer n BLM/OSEC (Dan Elcan) / Sage Geotech (Gary Aho) – 150 tons of oil shale n CR Colleagues [other paper – The Clean, Shale Oil Surface (C-SOS) Pilot Plant Process] n Dr. Craig Eatough n Mr. Steven Eatough n Mr. Kent Hatfield Combustion Resources, Inc. 2

  3. Objectives n Contract Objective – Demonstrate and characterize the C-SOS oil shale pilot plant n Modeling Analysis Objective – Develop and apply an oil shale process model for the kiln and the aft-end collection system Combustion Resources, Inc. 3

  4. C-SOS General Flow Diagram 2. Shale Oil Production 5 ton/day 3. Shale Oil Upgrading Pilot Plant 1. H 2 Production Combustion Resources, Inc. 4

  5. Two Element Model n Front-end: Kiln n Aft-end: Recovery & Separation Combustion Resources, Inc. 5

  6. Front-End: Kiln Combustion Resources, Inc. 6

  7. Front-End: Kiln (continued) Feed Hopper Oil Vapor/Gas Outlet Spent Shale Removal Combustion Resources, Inc. 7

  8. Aft-end: Shale Oil Recovery and Separation Unit Combustion Resources, Inc. 8

  9. Source of Shale White River Mine Stockpile White River oil shale mine site near Bonanza, UT Combustion Resources, Inc. 9

  10. Kiln Model Configuration Combustion Resources, Inc. 10

  11. Kiln Model Parameters SHALE PROPERTIES KILN THROUGHPUT n Particle size n Inside diameter n Moisture content n Length n Density (v. porosity, particle size) n Fill fraction or fill angle n Heat capacity (v. temperature) n Angle of repose n Thermal conductivity (v. porosity, n Slope temp.) n Rotation Rate n Heat of pyrolysis n Shale bulk density n Oil yield / mass shale n Oil heat capacity (v. temperature) SHALE SURFACE HEAT n Gas yield / mass shale TRANSFER n Gas heat capacity ( v. temperature) n Bulk density n Pyrolysis reaction rate (v. n Bulk heat capacity temperature) n Bulk thermal conductivity n Oil cracking rate (v. temperature) n Mean particle dia. n Kiln interface gas film thickness Combustion Resources, Inc. 11

  12. PRO II Model (aft end) Elements Diesel Light Gasoline Gasoline Gas Oil Heavy Diesel Combustion Resources, Inc. 12

  13. Pilot Plant Reference Case Model Inputs SHALE KILN n 4.2 ton/day n Inside dia. 0.83 (ft) n Western Shale (Miknis & n Length 7.00 (ft) Robertson*) n Volume 4.0 (ft 3 ) n 27.5 gal/ton n Rotation Rate 20.00 (rpm) n 1.62% water n Slope 1.0º n Gas 4.6% n Angle of repose 40.0º * Data taken from tables in: F.P. Miknis, R.E. Robertson, "Characterization of DOE Reference Oil Shales", DE88005703, September 1987 Combustion Resources, Inc. 13

  14. Reference Case Inputs (continued) OIL Gas Boiling Point (F) Mw Wgt % Boiling Point (F) Mw Wgt % NBP1 251 145 0.436 H2O 212 18.015 6.62 NBP2 433 175 0.452 H2 -423 2.016 0.0729 NBP3 487 196 0.458 C0 -313 28.01 0.1657 NBP4 543 219 0.472 NBP5 597 247 0.476 CH4 -259 16.042 0.2355 NBP6 656 278 0.485 CO2 -70 44.01 2.8232 NBP7 708 312 0.490 C2H4 -155 28.053 0.0499 NBP8 733 329 0.490 C2H6 -128 30.069 0.1477 NBP9 758 339 0.498 H2S -77 34.081 0.2335 NBP10 788 360 0.499 NBP11 818 382 0.506 C3H6 -54 42.08 0.0669 NBP12 849 407 0.514 C3H8 -44 44.096 0.1038 NBP13 880 432 0.523 C4H10 31 58.12 0.6287 NBP14 915 464 0.518 NBP15 949 498 0.521 NBP16 983 535 0.521 NBP17 1020 734 2.218 Combustion Resources, Inc. 14

  15. Kiln Model Predictions (4.2 tons/day) Reference ¡Case ¡-­‑ ¡4.2 ¡Tons/day ¡(CH 4 ¡Fuel) 600 1.20 500 1.00 Ts, ¡C 400 0.80 Tg, ¡C 0.60 300 Tw,C Fraction 200 0.40 reacted 100 0.20 0 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Combustion Resources, Inc. 15

  16. Kiln Model Predictions (4.2 tons/day – alternate burner firing) Modified ¡Reference ¡Case ¡-­‑ ¡4.2 ¡Tons/day ¡(CH4 ¡Fuel) Final Values: Ts = 506 C Tg = 513 C 1.20 600 FR = 0.996 1.00 500 Ts, ¡C 0.80 400 Tg, ¡C 0.60 Tw,C 300 Fraction 0.40 200 reacted 0.20 100 0 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Combustion Resources, Inc. 16

  17. Kiln Model - Summary Kiln Inputs Stream 1 Stream 17 Temperature (F) 77 Raw Shale to Kiln Temperature (F) 1000 Steam Purge for Kiln 12.6 12.6 Pressure (psia) Pressure (psia) Inputed Rates Mw Inputed Rates Compound lbm/min Compound lbm/min lb-mol/hr H 2 O CH4 5.836 18 0.2918 0.97269 Stream 6 Stream 18 Combustion Fuel Temperature (F) 77 Temperature (F) 1000 Kiln Valve Purge Steam (CH 4 ) to Kiln 12.85 12.6 Pressure (psia) Pressure (psia) Mw Mw Inputed Rates Inputed Rates Compound lbm/min lb-mol/hr Compound lbm/min lb-mol/hr CH4 H 2 O 16 0.1566 0.58718 18 0.0050 0.01667 Stream 7 Stream 19 Combustion Air to Rotary Valve Purge 77 1000 Temperature (F) Temperature (F) Kiln Steam Pressure (psia) 12.6 Pressure (psia) 12.6 Mw Inputed Rates Mw Inputed Rates Compound lbm/min lb-mol/hr Compound lbm/min lb-mol/hr H 2 O Air 28.964 2.693 5.57855 18 0.0050 0.01667 Kiln Ouputs Stream 20 Stream 22 1022 Flue Gas Out 970 Spent Shale Out Temperature (F) Temperature (F) 12.6 12.6 Pressure (psia) Pressure (psia) Mw Inputed Rates Inputed Rates Compound lbm/min lb-mol / hr Compound lbm/min Flue Gas Spent Shale 27.630 2.850 6.18802 4.889 25 Stream Oil Vapors & Gas + Temperature (F) 1000 Steam 12.6 Pressure (psia) Mw Inputed Rates lbm/min lb-mol/hr Compound Oil Vapors & Gas 1.2388 1.91292 Combustion Resources, Inc. 17

  18. C-SOS Pilot Plant Diagram and Stream Properties Stream Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Phase Solid Solid Vapor Solid Solid Vapor Vapor Vapor Water Water Water Water Water Water Vapor Vapor Water Water Water Total Molar Rate LB-MOL/H Total Mass Rate LB/H Temperature F Pressure PSIA 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Stream Name Phase Vapor S/V Solid Solid Solid Vapor Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Vapor Liquid Liquid Liquid Liquid Total Molar Rate LB-MOL/H Total Mass Rate LB/H Temperature F Pressure PSIA Stream Name 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 Phase Liquid Vapor Liquid Liquid Water Liquid Liquid Liquid Vapor Vapor Liquid Liquid Water Mixed Vapor Liquid Water Vapor Vapor Total Molar Rate LB-MOL/H Total Mass Rate LB/H Temperature F Pressure PSIA Title: C-SOS PROCESS FLOW DIAGRAM Size Number Revision A Date: 05/12/2010 Sheet 1 of 1 File: Drawn by: Ambar Montero Combustion Resources, Inc. 18

  19. Predicted Material & Energy Balances – Reference Case Materials (lbs/day) Enthalpy (BTUx10 5 /hr) IN OUT IN OUT Dry Oil Shale 10080 Spent shale 8424 Dry Oil Shale 9.12 Spent Shale 1.09 Water 156 Kiln Fuel (CH4) 2.02 Process Water 0.02 Gas Oil 274 Electricity 0.1 Oil Product 6.59 Heavy diesel cut 446 Steam 0.22 Flue gas 0.42 Diesel cut 250 Flare gas 1.13 Burner & Heat Gasoline cut 40 Losses (10%) 2.02 Light gasoline cut 12 Flare gas 478 Total 10080 10080 11.46 11.27 Combustion Resources, Inc. 19

  20. Observations n 2 component model describes C-SOS pilot plant in detail n Kiln parameters n Extent of oil release n Effects of key variables n Properties of 57 process streams n Production of gas oil, diesel, and gasoline cuts n Material balance n Energy balance Combustion Resources, Inc. 20

  21. Preliminary Observations n Computation for the Reference Case n 10% shale ore goes to oil products n 5% of shale ore goes to useful gas product 1 n Net Energy Production ≈ 3:1 2 n Energy Recovery = 72% n Computations for Base Case (First Pilot Plant test) n In process n Comparison with pilot plant test data 1 Energy in oil : process energy (w/o mining, transportation and crushing) 2 Energy in oil / energy in the raw shale Combustion Resources, Inc. 21

  22. Plans – Second Year – Phase II n Pilot plant Tests n Effect of key variables n Oil split and quality n Long duration test n Oil fractions upgrading n Hydro treating n Hydro cracking n Comparison with Model Predictions n Demonstration/Commercial Scale n Preliminary Design n Cost Combustion Resources, Inc. 22

  23. Thank You Robert Jackson Doug Smoot Ambar Ochoa Combustion Resources, Inc Provo, Utah Combustion Resources, Inc. 23

Recommend


More recommend