Shale oil composition and production kinetics JWBA, Inc. James W. Bunger, Ph.D. Oil Shale Symposium Christopher P. Russell, Ph.D. Colorado School of Mines Donald E. Cogswell, M. S October 18-20, 2010 Red Leaf Resources, Inc. James W. Patten, Ph.D.
Topics • Temperature – time conditions • Kinetic treatment • Product yields • Molecular compositions
Time-temperature history Thru Feb 10 800 Simulator 7 days (solid line) 700 600 losses to start N2 inerting surroundings T avg - deg F burner failure 500 equal to input 400 Actual production (yellow data points) 300 200 100 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 days from start
Observations • Long heatup times result in production chemistry substantially different from traditional surface process times, as well as Fischer Assay chemistry. • Understanding production kinetics is essential to process simulation and optimization • Composition of resulting product is very different when oil shale is subjected to slow, indirect heat compared to fast, direct heat.
Property - units EcoShale Unocal 23 Estonia 32 Colorado Kukersite 8 Measured input data for Z-BaSIC file Utah construction Carbon – wt% 85.26 85.87 88.31 Hydrogen – wt% 12.45 11.74 8.06 Nitrogen – wt% 1.55 1.30 0.1 Basic Nitrogen – wt% 1.08 0.73 NA Sulfur – wt% 0.249 0.918 0.557 Oxygen – wt% 1.24 0.17 2.98 Density @ 15.5 ºC – g/cc 0.8643 .9148 1.0189 API gravity - degrees 32.2 23.2 7.4 Additional property data on whole oils - Z-BaSIC output data UOP K factor 11.55 11.3 10.3 Average MW - Dalton 198 245 226 Conradson Carbon wt % Non-detect 3.0 0.2 D-2887 distillation data 10% point ºF 330 384 528 50% point ºF 560 716 702 90% point ºF 801 935 915 Kinematic Viscosity @ 37.78 ºC - 4.00 23.3 259 cSt Kinematic Viscosity @ 50.0 ºC - cSt 3.04 NA NA Dynamic Viscosity @ 37.78 ºC - cP 3.39 21.5 266 Dynamic Viscosity @ 50.0 ºC -cP 2.55 14.4 136 ND = non-detect NA= not analyzed
Diesel Yield From Raw Shale Oil Boiling range distribution for Ecoshale 32 and WTI 42 1400 1200 T - degrees Fahrenheit 1000 EcoShale 32 API 70% diesel range 800 600 C21 400 WTI 42 API 47% diesel range 200 C8 0 0 20 40 60 80 100 120 Wt percent over 10 �
Raw Shale Oil and Hydrostabilized Oil Sample Description Raw Oil HT Oil RL09-345 RL10-17 Hydrogen, %wt 12.28 12.56 Carbon, %wt 85.62 85.57 Nitrogen, %wt 1.49 1.41 Sulfur, %wt 0.224 0.077 TAN, mg KOH/g 0.6 0.1 Bromine #, g/100g 32 6.4 API @60F 33.0 33.3 Specific Gravity @60F 0.8601 0.8586
Kinetic model gas Kerogen oil coke Secondary reactions are not relevant because the residence time of liquid and gaseous products formed is very short in relationship to overall reaction time. Arrhenius parameters vary with progress of reaction; i.e. kerogen itself is a range of types, and different reactions dominate at different temperatures and times.
Regression procedure • Input data – Temperature, time, mass yields of oil and gas, and an estimate of original kerogen content • Mathematical formulation requires 6 parameters to describe the pre-exponential function and activation energy for each of the three paths. • Regress a best fit to laboratory and field pilot plant data.
ACTIVATION ENERGY vs. TIME FOR THE 222 DAY CASE 65 60 55 50 E a (Kcal/mole) 45 40 35 GAS 30 OIL COKE 25 20 3000 3500 4000 4500 5000 5500 tr (hr)
TEMPERATURE vs. TIME 800 700 lab field pilot 600 commercial 500 O F) 400 T ( 222 day 300 95 day 200 7 day 100 0 0 1000 2000 3000 4000 5000 tr (hr)
COMPARE KINETICS FOR 7 DAY, 95 DAY AND 222 DAY RUNS CUMULATIVE GAS PRODUCTION 0.16 0.14 222 day 0.12 95 day 0.1 7 day G/K 0 0.08 0.06 0.04 0.02 0 500 550 600 650 700 750 O F) T (
Z-BaSIC™ • Acronym for the Z-Based Structural Index Correlation Method • Classify all compounds by z-series according to the empirical formula C n H 2n+z N u S v O w • Method for – Identifying components of about 70 homologous series in a mixture – Estimating the properties of those components – Quantifying the concentrations of those components • Results in a closed mass balance at the molecular and elemental level.
Identification of ‘ z ’ classes by molecular ions and GC retention time A b u n d a n c e I o n 2 0 4 . 0 0 ( 2 0 3 . 7 0 t o 2 0 4 . 7 0 ) : 0 0 3 9 0 1 . D dihydropyrenes alkylbenzothiophenes 5 0 0 0 4 0 0 0 phenylnaphthalenes alkylbenzenes 3 0 0 0 2 0 0 0 1 0 0 0 0 2 8 . 0 0 3 0 . 0 0 3 2 . 0 0 3 4 . 0 0 3 6 . 0 0 3 8 . 0 0 4 0 . 0 0 4 2 . 0 0 4 4 . 0 0 4 6 . 0 0 4 8 . 0 0 5 0 . 0 0 5 2 . 0 0 T i m e - - > A b u n d a n c e I o n 2 1 8 . 0 0 ( 2 1 7 . 7 0 t o 2 1 8 . 7 0 ) : 0 0 3 9 0 1 . D 4 0 0 0 3 0 0 0 2 0 0 0 1 0 0 0 0 2 8 . 0 0 3 0 . 0 0 3 2 . 0 0 3 4 . 0 0 3 6 . 0 0 3 8 . 0 0 4 0 . 0 0 4 2 . 0 0 4 4 . 0 0 4 6 . 0 0 4 8 . 0 0 5 0 . 0 0 5 2 . 0 0 T i m e - - > A b u n d a n c e I o n 2 3 2 . 0 0 ( 2 3 1 . 7 0 t o 2 3 2 . 7 0 ) : 0 0 3 9 0 1 . D 3 0 0 0 2 0 0 0 1 0 0 0 0 2 8 . 0 0 3 0 . 0 0 3 2 . 0 0 3 4 . 0 0 3 6 . 0 0 3 8 . 0 0 4 0 . 0 0 4 2 . 0 0 4 4 . 0 0 4 6 . 0 0 4 8 . 0 0 5 0 . 0 0 5 2 . 0 0 T i m e - - >
Z-BaSIC™ Information Logic Z-Assays (reconciled) Physical Crude Oils and Laboratory and on-line Intermediate monitored property data Composition and Process Streams Property Reports Preparation of original LP Input 'cp' file adjuster Z-BaSIC Applications 'cp' files files Model, Simulator and Optimizer Input files GC-MS Library Assays analysis First-Principal Simulators Elemental analysis - C, H, S, N, O & metals Density HTSD, light gas analysis Optional - NMR, viscosity, RVP, MW, etc.
Density 1.5 1.4 1.3 1.2 1.1 g/cc 1 0.9 0.8 0.7 0.6 0.5 0 10 20 30 40 50 Carbon number
Hydrocarbon types EcoShale 32 wt% n-paraffins 12.623 i-paraffins 13.991 monolefins 1.906 mononaphthenes 5.12 diolefins 0.355 cylcomonolefins 0.356 dinaphthenes 7.671 triolefins 0.078 cyclodiolefins 0.546 dicyclomonolefins 0.305 trinaphthenes 7.282 tetranaphthenes 1.927 pentanaphthenes 1.266 hexanaphthenes 0.081 heptanaphthenes 0.41 monoaromatics 2.068 vinyl benzenes 0.469 naphthenomonoaromatics 0.286 phenyldienes 0.81 dinapthenomonoaromatics,indenes 0.079 trinaphthenomonoaromatics 0.823 tetranapthenomonoaromatics 0.018 diaromatics 1.828 acenaphthene/naphthenodiaromatics 0.883 dinaphthenodiaromatics 0.01 acenaphthalenes/fluorenes 0.22 triaromatics 0.33 naphthenotriaromatics/dihydropyrenes 0.009 phenylnaphthalenes 0.159 tetraaromatics (peri-condensed) 0.006 tetraaromatics (cata-condensed) 0.029 naphthenoflourenes 0.001 pentaaromatics (peri-condensed) 0.033 sub total 61.978
Heteroatom types EcoShale 32 wt% naphthenosulfides/thiols 0.646 dinaphthenosulfides/thiols 0.649 thiophenes 0.159 trinaphthenosulfides/thiols 0.135 thiophenol 0.052 tetrahydrobenzothiophene 0.081 tetranaphthenosulfides/thiols 0 benzothiophenes 0.091 benzodithiophenes 0.005 dibenzothiophenes 0 epithiophenanthrenes 0.002 benzodibenzothiophenes 0.001 pyrroles 2.397 indoles 6.112 carbazoles 0.002 4-ring pyrrolics* 0.076 pyridines 13.629 quinolines 2.439 phenanthridines 0.065 4-ring pyridinics* 1.573 phenols 4.758 hydroxy tetralins 0.427 naphthols 0.933 dibenzofuran 0 resorcinols 1.752 dihydroxy tetralins 0.529 subtotal 36.513
Summary • Have demonstrated the accuracy of the heat transfer simulation • Have identified a fundamentally meaningful reaction scheme and kinetic treatment • Have developed the means to interpret retorting results at the molecular level • Now need to complete the verification through additional laboratory work and field experience. • Apply this approach to oil shale in other parts of the world.
Thank you for your attention Jim@jwba.com
Recommend
More recommend