model order reduction for pde constrained optimization in
play

Model order reduction for PDE constrained optimization in vibrations - PowerPoint PPT Presentation

Model order reduction for PDE constrained optimization in vibrations Karl Meerbergen (Joint work with Yao Yue) KU Leuven SCEE12 Z urich Examples of vibrating systems Car tyres Windscreens Structural damping Choice of


  1. Model order reduction for PDE constrained optimization in vibrations Karl Meerbergen (Joint work with Yao Yue) KU Leuven SCEE12 – Z¨ urich

  2. Examples of vibrating systems Car tyres Windscreens ◮ Structural damping ◮ Choice of connection (glue) to the car K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 2 / 35

  3. Examples of vibrating systems Planes Maxwell-equation – electrical circuits micro-gyroscope for navigation Bridge vibrating under footsteps systems and Thames wind K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 3 / 35

  4. Model order reduction (MOR) in optimization context Dynamical system: A ( ω, γ ) x = f d T x y = � ω max | y | 2 d ω g = (energy) ω min Objective: minimize g ( γ ) Reduce the cost of computing y and ∇ y : ◮ Model reduction using moment matching = Pad´ e approximation via Krylov methods ◮ Allows for cheap computation of g and ∇ γ g Assume uni-modal objective function K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 4 / 35

  5. Outline Motivation 1 MOR: Krylov-Pad´ e methods 2 Parametric MOR 3 Trust region approach 4 Block Krylov method for low rank parameters 5 Conclusions 6 K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 5 / 35

  6. Left and right Krylov spaces For the linear case: A ( ω ) = I − ω B : Right Krylov space: f , Bf , B 2 f , . . . , B k − 1 f Basis: V k = [ v 1 , . . . , v k ] Left Krylov space: d , B ∗ d , B 2 ∗ d , . . . , B ( k − 1) ∗ d Basis: W k = [ w 1 , . . . , w k ] Reduced model: � � A ( ω ) � x = f � d T � � y = x with � A = W k ∗ AV k , � f = W k ∗ f , � d = V k ∗ d . K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 6 / 35

  7. Moment matching Let A ( ω ) = I − ω B System output: y = d T ( I − ω B ) − 1 f . Theorem Define the expansions: y 0 + ω y 1 + ω 2 y 2 + · · · y = y 1 + ω 2 � � y = y 0 + ω � � y 2 + · · · Let V k and W k be right and left Krylov basis resp., then y j = � y j with j = 0 , 1 , . . . , 2 k − 1 . Rational (Pad´ e) approximation: n k � � � ρ j ρ j y ( ω ) = � y ( ω ) = � λ j − ω λ j − ω j =1 j =1 poles are Ritz values (approximate eigenvalues) K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 7 / 35

  8. Gradient Build two-sided reduced model for fixed value of γ for y = d T A ( ω, γ 0 ) − 1 f Gradient: � dA ( ω, γ 0 ) � � � � ∗ � dy A ( ω, γ 0 ) − 1 f A ( ω, γ 0 ) −∗ d d γ = d γ Blue part can be computed from right-Krylov space: A ( ω, γ 0 ) − 1 f ≈ V k ( � A − 1 ( ω, γ 0 ) � f ) ( k moments matched for A ( ω, γ 0 ) − 1 f .) Red part can be computed from left-Krylov space: A ( ω, γ 0 ) −∗ d ≈ W k ( � A −∗ ( ω, γ 0 ) � d ) ( k moments matched for A ( ω, γ 0 ) −∗ d .) K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 8 / 35

  9. Gradient Full gradient � dA ( ω, γ 0 ) � � � � ∗ � dy A ( ω, γ 0 ) − 1 f d γ = A ( ω, γ 0 ) −∗ d d γ Reduced gradient � ∗ � dA ( ω, γ 0 ) � � � � d � y W k � A ( ω, γ 0 ) −∗ � V k � A ( ω, γ 0 ) − 1 � = d f d γ d γ � � � � � ∗ � d � A ( ω, γ 0 ) A ( ω, γ 0 ) −∗ � � A ( ω, γ 0 ) − 1 � � = d f d γ d γ and dy d � y d γ match k moments. [Antoulas, Beattie, Gugercin 2010] [Yue, M. 2011] Almost free computatation of the gradient, regardless the number of parameters! K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 9 / 35

  10. Implementation issues Linear case: A ( ω ) = A 0 + ω A 1 . ( A 0 + ω A 1 ) x = f Replace by: B = A − 1 0 A 1 , b = A − 1 ( I + ω B ) x = b with 0 f d T x y = Krylov space: sequence of matrix vector multiplies with B Computational cost: ◮ Sparse matrix factorization of A 0 ◮ k sparse matrix vector products with A 1 ◮ k backward solves with A 0 . K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 10 / 35

  11. Nonlinear frequency dependence ( K + i ω C − ω 2 M ) x = f ‘Linearization’: ◮ Define matrices A and B � � � � K iC − M A = B = I I so that � � � � x f ( A − ω B ) = ω x 0 This is called a linearization, a similar trick as the solution of second order ODE’s. K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 11 / 35

  12. Linearizations Higher order polynomials ( A 0 + ω A 1 + · · · + A p ω p ) x = f Methods based on Companion ‘linearization’ [Amiraslani, Corless, Lancaster, 2009] Transform to ( A λ B ) x = 0 −   A 0 A 1 A p − 1   0 − A p    x  · · · · · · · · · I I 0 ω x         ω = 0     .    .  ... ... − . .         . .         ω p − 1 x I I 0 Can also be used for truly nonlinear problems (using Taylor expansion) [Van Beeumen, M., Michiels 2012] K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 12 / 35

  13. Nonlinear output Quadratic output: ( A 0 − ω A 1 ) x = f y = x ∗ Sx with S a low rank matrix. reduced model: ( � A 0 − ω � � A 1 ) � x = f x ∗ � y = � S � x with � A 0 = W T A 0 V , � A 1 = W T A 1 V , � S = V T SV and � f = W T f . V : Krylov space with matrix A − 1 0 A 1 and starting vector A − 1 0 f W : Block-Krylov space with matrix A − 1 0 A 1 and SV . √ Matching between k + k and k + k moments [Van Beeumen, Van Nimmen, Lombaert, M., 2012] K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 13 / 35

  14. Design optimization Determination of optimal parameters of a vibrating system Example: optimal parameters for a damper of a floor in a building near a noisy road k 1 c 1 m 1 K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 14 / 35

  15. Design optimization Parametrized linear system: � ( K ( γ ) + i ω C ( γ ) − ω 2 M ( γ )) x = f d T x y = Find parameters γ so that � ω max ◮ � y � 2 = | y | 2 d ω is minimal 0 | y | 2 is minimal ◮ � y � ∞ = sup ω max 0 Assume: uni-modal, non necessarily smooth Expensive evaluation of y and the gradient K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 15 / 35

  16. Overview γ ( i ) Use MOR for function and gradient evaluation K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 16 / 35

  17. Algorithm We use the Damped BFGS optimization method On iteration i : ◮ Build reduced model for γ ( i ) g ◮ Compute g and ∇ g from the reduced model Objective may not be smooth: use sufficient decrease condition and possibly backtracking after the BFGS step K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 17 / 35

  18. Numerical examples Floor with damper ( n = 29800) Reduced model k = 7 Determine optimal parameters c 1 and k 1 Direct method MOR Matrix size 29800 7 Optimizer computed (12231609 , 106031 . 18) (12231614 , 106031 . 22) 1 . 316093349 10 10 1 . 316093349 10 10 Function value CPU time 7626s 179s K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 18 / 35

  19. Overview γ ( i ) γ ( i ) Use PMOR for Use MOR for line search function and optimization + gradient backtracking evaluation K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 19 / 35

  20. Parametric MOR: PIMTAP Reduced model for equations of the following form: ( G 0 + λ G 1 + s ( C 0 + λ C 1 )) x = b d ∗ x y = Perform moment matching, i.e. terms associated with s i λ j . Algorithms ◮ Many, many papers, e.g. Lihong Feng. ◮ PIMTAP [Li, Bai, Su, Zeng 2007], [Li, Bai, Su, Zeng 2008], [Li, Bai, Su 2009] ◮ Subspace that contains the vectors: r j = 0 i < 0 , or j < 0 i r 0 G − 1 = 0 b 0 r j − G − 1 0 ( C 0 r j i − 1 + G 1 r j − 1 + C 1 r j − 1 = i − 1 ) i i These are the moments in the expansion x ∼ � r j i s i λ j Two-sided PIMTAP ◮ One PIMTAP for b and one for d . K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 20 / 35

  21. Moment matching of the gradient Moment matching patterns for left and right Krylov spaces λ λ ✻ ✻ 4 4 3 3 2 2 1 1 ✲ ✲ s s 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 Moment matching pattern for y λ ✻ 4 3 2 1 ✲ s 0 1 2 3 4 5 6 7 8 9 10 K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 21 / 35

  22. Moment matching of the gradient Moment matching pattern for y λ ✻ 4 3 2 1 ✲ s 0 1 2 3 4 5 6 7 8 9 10 Moment matching pattern for ∂ y ∂ s and ∂ y ∂λ λ λ ✻ ✻ 4 4 3 3 2 2 1 1 ✲ ✲ s s 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 22 / 35

  23. The MOR/PMOR Framework We can make a reduced model for ω and all parameters γ This is usually expensive and overkill: only reduce on the important directions So, we use PIMTAP for efficient line search: γ ( i +1) γ ( i ) ◮ The MOR Framework generates a reduced model for each γ accessed. ◮ The PMOR Framework generates a reduced model for each line search iteration. K. Meerbergen (KU Leuven) MOR - Optimization SCEE12 – Z¨ urich 23 / 35

Recommend


More recommend