mocvd enables cutting age
play

MOCVD enables cutting-age Stanford University applications Dr. - PowerPoint PPT Presentation

MOCVD enables cutting-age Stanford University applications Dr. Xiaoqing Xu Stanford Nanofabrication Facility, Stanford University Center for Integrated Systems 2007.11.08 Department of Electrical Engineering Stanford University Todays


  1. MOCVD enables cutting-age Stanford University applications Dr. Xiaoqing Xu Stanford Nanofabrication Facility, Stanford University Center for Integrated Systems 2007.11.08 Department of Electrical Engineering

  2. Stanford University Today’s SNF is a collection of shared lab spaces • The Cleanroom (green): “Classic” fab, Si CMOS process plus some “dirty” processes for flexibility. • ExFab: Flexible/fast fab, beyond electronics, beyond silicon. 3D printing, microfluidic, advanced lito et al. • MOCVD lab (left): GaAs and GaN, doped and intrinsic films/nanostructures on III-V, silicon and sapphire. • SPF (blue): Systems Prototyping facility for designing & assembling boards and systems. MOCVD Lab • (Annex) Wide Band Gap Lab: Construction is underway for WBG materials processing and characterization. • Open to all, ~500 active users, ~70% from internal/external academia, ~30% from industry No longer a monolithic cleanroom, today’s SNF is a collection of lab spaces, enabling: - Flexibility, by adapting spaces to meet dynamically changing research needs - Experimentation, by tailoring spaces with capabilities & rates to serve different target audiences. Allen First Floor Stanford Nanofabrication Facility 2 2019/12/12

  3. Stanford University Outline  MOCVD introduction  MOCVD enabled applications and related research at Stanford  VCSEL (Vertical-Cavity Surface-Emitting Laser)  HEMT (High Electron Mobility Transistor)  LED (Light Emitting Diode)  Solar energy conversion  Emerging substrate techniques  GaN and GaAs substrate challenges  Research on re-use substrates Stanford Nanofabrication Facility 3 2019/12/12

  4. Stanford University SNF MOCVD lab ( 986.9hr charged hours in 2018 ) In,Al,Ga-As,P,(dilute nitride) epitaxial films and nanostructures, Temperature up to 800 o C AIXTRON 200/4 III-V MOCVD n-, p-type doing In,Al,Ga-N epitaxial films Temperature up to 1300 o C AIXTRON CCS III-N MOCVD and n-, p-type doing Stanford Nanofabrication Facility 4 2019/12/12

  5. Stanford University VCSEL for mobile phone iphone X started face ID The flood illuminator shines infrared light at your face, which allows the system to detect whoever is in front of the iPhone, even in low-light situations or if the person is wearing glasses (or a hat). Then the dot projector shines more than 30,000 pin-points of light onto your face, building a depth map that can be read by the infrared camera GaAs based MOCVD VCSEL (vertical-cavity surface-emitting laser) https://www.computerworld.com/article/3235140/apples-face-id-the-iphone-xs-facial-recognition- tech-explained.html Stanford Nanofabrication Facility 5 2019/12/12

  6. Stanford University Material capability of MOCVD Stanford Nanofabrication Facility 6 2019/12/12

  7. Stanford University MOCVD/MOVPE Growth Mechanisms MOCVD: metal organic chemical vapor deposition GaN for example: MOVPE: metal organic vapor phase epitaxy Stanford Nanofabrication Facility 7 2019/12/12

  8. Stanford University Stanford Nanofabrication Facility 8 2019/12/12

  9. Stanford University MOCVD/MOVP- Epitaxy Schematic Homoepitaxy Heteroepitaxy Epi-film Defect (dislocation) form to relieve the strain Substrate Lattice matched Strained Adapted and modifieded from Muhammad Iqbal Bakti Utama, Nanoscale. 2013 May 7;5(9):3570-88 Stanford Nanofabrication Facility 9 2019/12/12

  10. Stanford University Device application background Laser Solar cell LED HBT (heterojunction bipolar transistor) New sensor systems for extreme &HEMT (High-electron-mobility transistor) harsh environments Sanjay Raman, CS MANTECH Conference, April 23rd - 26th, 2012, Boston Stanford Nanofabrication Facility 10 2019/12/12

  11. Stanford University Outline  MOCVD introduction  MOCVD enabled applications and related research at Stanford  VCSEL (Vertical-Cavity Surface-Emitting Laser)  HEMT (High Electron Mobility Transistor)  LED (Light Emitting Diode)  Solar energy conversion  Emerging substrate techniques  GaN and GaAs substrate challenges  Research on re-use substrates Stanford Nanofabrication Facility 11 2019/12/12

  12. Stanford University MOCVD hot field-1. VCSEL Structure diagram of VSCEL Structure of DBR https://www.enlitechnology.com/show/semiconductor.htm Adam W. Bushmaker, IEEE Photonics Journal, 1504011, Vol. 11, No. 5, October 2019 Stanford Nanofabrication Facility 12 2019/12/12

  13. Stanford University VCSEL for mobile phone Stanford Nanofabrication Facility 13 2019/12/12

  14. Stanford University VCSEL for Lidar https://automotive.electronicspecifier.com/sensors/what-is-driving-the-automotive-lidar-and-radar-market Stanford Nanofabrication Facility 14 2019/12/12

  15. Stanford University VCSEL Research at Stanford: GaAs based long wavelength VCSELs Li Zhao, PhD thesis, Stanford University, 2019 Stanford Nanofabrication Facility 15 2019/12/12

  16. Stanford University Outline  MOCVD introduction  MOCVD enabled applications and related research at Stanford  VCSEL (Vertical-Cavity Surface-Emitting Laser)  HEMT (High Electron Mobility Transistor)  LED (Light Emitting Diode)  Solar energy conversion  Emerging substrate techniques  GaN and GaAs substrate challenges  Research on re-use substrates Stanford Nanofabrication Facility 16 2019/12/12

  17. Stanford University MOCVD hot field-2. HEMT EPC's GaN Power Transistor Structure AlN P-GaN AlGaN GaN Scanning electron micrograph cross section of an eGaN FET Stanford Nanofabrication Facility 17 2019/12/12

  18. Stanford University GaN HEMT for lidar Si power switch GaN power switch Alex Lidow, “How eGaN FETs and IC Technology Improves Lidar performance”, 2018 APEC Stanford Nanofabrication Facility 18 2019/12/12

  19. Stanford University GaN HEMT for smaller charger Stanford Nanofabrication Facility 19 2019/12/12

  20. Stanford University GaN HEMT for wireless charging Stanford Nanofabrication Facility 20 2019/12/12

  21. Stanford University HEMT Research at Stanford: 1. D-mode AlGaN/GaN HEMT on Si (a) (b) GaN Al 0.2 Ga 0.8 N Al 0.5 Ga 0.5 N Al 0.8 Ga 0.2 N 1x1 μ m AlN (d) (c) 10x10 μ m (a) SEM cross section and (b) XRD pattern of the HEMT structure; (c) the PL mapping of the Al x Ga 1-x N barrier and (d) the thickness mapping of the full HEMT structure. AFM image of GaN on Si Stanford Nanofabrication Facility 21 2019/12/12

  22. Stanford University Wafer scale high uniformity Ti/Al/ Ti l/Pt Ti Ti/Al/ l/Pt /Au /A /A /Au Al 0.25 Ga Al Ga 0.75 N AlN GaN GaN 2DEG 2DE 2DE 2DEG Al 0. Al 0.2 Ga Ga 0. 0.8 N Al 0. Al 0.5 Ga Ga 0. 0.5 N Al 0. Al 0.8 Ga Ga 0. 0.2 N AlN Al Si Si(111) Substrate Wafer Bow 2DEG Mobility Average #1 #2 #3 #4 #5 (cm 2 /Vs) Stdev% µ 1 (cm 2 /Vs) 1205.7 1218.1 1217.8 1206.4 1230.6 -- -- µ 2 (cm 2 /Vs) 1210.5 1207.7 1206.6 1206.4 1226.2 -- -- µ (cm 2 /Vs) 1208.1 1212.9 1212.2 1206.4 1228.4 1213.6 0.72% Xiaoqing Xu et al., AIP Advances 6, 115016 (2016) Stanford Nanofabrication Facility 22 2019/12/12

  23. Stanford University Degradation of 2DEG transport properties after 600 ° C annealing Table: PL peak of Al 0.25 Ga 0.75 N barrier for samples w/o Al 2 O 3 passivation, before and after anneal in air/Argon Hou, Minmin, Sambhav R. Jain, Hongyun So, Thomas A. Heuser, Xiaoqing Xu , et al., Journal of Applied Physics 122, 195102 (2017). Stanford Nanofabrication Facility 23 2019/12/12

  24. Stanford University Degradation of 2DEG transport properties after 600 ° C annealing Schematic illustration of the microstructural evolutions of the unpassivated and Al2O3- passivated AlGaN/GaN heterostructures at 600 ° C in air and in argon. Hou, Minmin, Sambhav R. Jain, Hongyun So, Thomas A. Heuser, Xiaoqing Xu , et al., Journal of Applied Physics 122, 195102 (2017). Electron mobility (a) and sheet density (b) measured in the four groups of AlGaN/GaN samples over 5 hours of annealing Stanford Nanofabrication Facility 24 2019/12/12

  25. Stanford University HEMT Research at Stanford: 2. 3D inverted pyramidal AlGaN/GaN HEMT SEM images of the inverted pyramidal silicon surfaces: (a) 40 o tilted view and (b) zoomed-in view. SEM images of group III-nitride multilayers deposited on (c) planar silicon substrate and (d) inverted pyramidal silicon surface with (e) – (g) zoomed-in views at different positions. Hongyun So, et al., Appl. Phys. Lett. 108, 012104 (2016) Stanford Nanofabrication Facility 25 2019/12/12

  26. Stanford University Low-resistance gateless HEMT using 3D inverted pyramidal AlGaN/GaN surfaces Comparison of the electrical resistance of 2DEG channel grown on different surfaces Hongyun So, et al., Appl. Phys. Lett. 108, 012104 (2016) Stanford Nanofabrication Facility 26 2019/12/12

  27. Stanford University V-Grooved AlGaN/GaN Surfaces for High Temperature Ultraviolet Photodetectors Responsivity as a function of temperature (ultraviolet intensity of 3 ± 0 . 1 mW/cm 2 and 1 V bias). Hongyun So, et al., IEEE SENSORS JOURNAL, VOL. 16, NO. 10, MAY 15, 2016 Stanford Nanofabrication Facility 27 2019/12/12

  28. Stanford University Outline  MOCVD introduction  MOCVD enabled applications and related research at Stanford  VCSEL (Vertical-Cavity Surface-Emitting Laser)  HEMT (High Electron Mobility Transistor)  Micro LED (Light Emitting Diode)  Solar energy conversion  Emerging substrate techniques  GaN and GaAs substrate challenges  Research on re-use substrates Stanford Nanofabrication Facility 28 2019/12/12

Recommend


More recommend