mixing shear and dilation in marginal solids
play

Mixing shear and dilation in marginal solids Brian Tighe with Ren - PowerPoint PPT Presentation

Mixing shear and dilation in marginal solids Brian Tighe with Ren Pecnik and Ana Martin Calvo Mixing shear and dilation... I. Dilation induced by shear II. Tuning shear compliance with pre-tension Mixing shear


  1. Mixing shear and dilation in marginal solids Brian Tighe with René Pecnik and Ana Martin Calvo

  2. Mixing shear and dilation... I. Dilation induced by shear II. Tuning shear compliance with pre-tension

  3. Mixing shear �������� and dilation... I. Dilation induced by shear II. Tuning shear compliance �������� with pre-tension

  4. Counterintuitive dilatancy Janmey et al. Nature Materials 2006 O. Reynolds 1885 Hutzler Conti & MacKintosh PRL 2008 Weaire & Hutzler, Phil. Mag. 2003 Weaire Packings expand, networks contract: Why the difference? packings : networks: foam liquid djl = 0.07 system expands system contracts (BoIton (a) 6 or pressure increases or pressure decreases (o), averaged 60, ( - ) , cljl < data

  5. Dilatancy enhanced near jamming 휙 ↗ RCP Ren, Dijksman & Behringer PRL 2013

  6. A nonlinear effect normal stress p 0 γ L symmetry: ϵ L ✏ = 1 2 R p � 2 + . . . Reynolds dilatancy coefficient ✓ @ 2 ✏ ◆ R p = @� 2 γ Ren, Dijksman & Behringer, PRL 2013 Weaire & Hutzler, Phil. Mag. 2003

  7. Reynolds coefficient γ L assume a hyperelastic solid: ϵ L energy d U = − p d V − σ V d γ “enthalpy” d H = V d p − σ V d γ ✓ ∂ V ◆ ✓ ∂ σ V ◆ Maxwell = − ∂γ ∂ p p γ expression for R p Weaire & Hutzler, Phil. Mag. 2003 BPT, Gran. Matt. 2013

  8. Reynolds coefficient ✓ ∂ G ◆ − G shear modulus G > 0 Young’s modulus E > 0 R p = ∂ p E typically E > G γ Weaire & Hutzler, Phil. Mag. 2003 BPT, Gran. Matt. 2013

  9. Reynolds coefficient ✓ ∂ G ◆ − G shear modulus G > 0 Young’s modulus E > 0 R p = ∂ p E typically E > G γ magnitude >> 1 in marginal solids does compression ✓ ∂ G ◆ stiffen or soften the ' ∂ p shear modulus? γ Weaire & Hutzler, Phil. Mag. 2003 BPT, Gran. Matt. 2013

  10. Soft spheres ✓ ∂ G ◆ R p ' ∂ p γ �������� G ∼ p 1 / 2 (Hookean) O’Hern, Silbert, Liu & Nagel, PRE 2003 1 R p ∼ p 1 / 2 > 0 packings expand BPT, Gran. Matt. 2013

  11. Packings expand: verified in model foams ' % . Y E , averaged pressure 6 data (BoIton Weaire cljl < 1. Physical intuition? 0 0.05 '0.1 0 . 1 5 0 . 2 0.25 0.3 0 . 3 5 0.4 0 . 4 5 G.Y Hencky strain Hutzler shear strain 2. What about networks? foam 60, osn~otic with foam softivare n/(y/R) undefortned (a) liquid = 0 . 0 8 , ~ l 1 , ~ 6 > q~,,. n,,,,,, I 7 j3(al). djl = ( - ) , 0.07 (o), Weaire & Hutzler, Phil. Mag. 2003

  12. Mixing shear �������� and dilation... I. Dilation induced by shear II. Tuning shear compliance �������� with pre-tension

  13. �������� �������� �������� �������� �������� �������� �������� �������� � � � � � � � � unloaded state = floppy = tunable! �������� �������� �������� �������� �������� �������� �������� �������� �������� rest length p > 0 k e ff ∼ p �������� �������� �������� �������� �������� �������� �������� �������� �������� Tuning with tension

  14. : Networks tension p = 0 p = 10 -3 p = 10 -1 floppy z < z c coordination rigid z > z c f/f max 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  15. : Networks tension p = 0 p = 10 -3 p = 10 -1 OFF z < z c coordination ON z > z c f/f max 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  16. Manipulating marginal matter Brown et al, PNAS 2010 unjammed = OFF jammed = ON jamming transition as a switch

  17. Rigidity induced by tension p = 0 p = 10 -3 p = 10 -1 z < z c measure G tension p rigidity: jamming transition as a switch ...or a knob

  18. Shear modulus Ú ‡ ı Á Á Ú Ú Ì ‡ ı Ì Ú ‡ Á Ú ı ‡ connectivity Ì Ì Ì Ê Á Á Á Ú Ú Ï ‡ ‡ Ù Ù Ú Ú Ú Ú · · Û Û ‡ ı ı Ì Ê Á Ï Ú Ù Ú Ú Ú ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ · ‡ ‡ ‡ Ê ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı Ï Ï Û Ù Ù Ê Ê Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì · · Ï Ï Û Û Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Ú Ú Ú Ê ‡ Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ï Ê Ù Ì Ì Ì Ï · Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ù Ù Û Û ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ · · Û Û Ê Ê Ê Ê Ï Ï ‡ Ê Ê Ê Ï Ï 0.100 Ù Ú Ú Ú Ù ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ı ‡ ‡ · · · Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Ì Û Û Û Û Ê Ê Ê Ê Ï Ï Ï Ï Ï Ù Ù Ù Ù ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ · Ê Ê · Û Û Ï Ï Û Û Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ê Ê Ê Ê Ï Ï Ï Ï Ù Ù · · · Ê Ê Ê Ê Ê Ï Ï Û Ì 0.050 Û Ù Ù Ê Á Ê · · Ï Ï Ï Ï Û Û Ù Ù G Ï Ï Ï Ê Ê · · Û Û Ù Ù Ù Ï Ê · · Ù Ï Û Û ‡ Ê Ê Ê Ê · · Û Û Ï Ï Ï Ï · Ê Ê Ï Ï Ù Ù modulus Ù Ù Û Û Û ı Ú Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê Ê · · · Ï Ï Ï Ï Ï Ï Ï Ï Û Ï Ï Ì Ê Ê Ù Ù G Ù Ù Ù Ï Ï · · Û Û · · Ï Û Û Ê Ù Ê Ê Ï critical scaling Á · · · Ï Ï · · · Û Û Ù Ù Ù Ù 0.010 Ê Ê Û Û Û Ï Ï Á Ê Ï Ï Ï Û Ù Ù Ù Ù Ê Ê Ù Ù Ù Ê Ï Ï Ï · · · · · · · · Û Û Ï Ï Ï Ï Ï Ê Ê Û Û ✓ ◆ G ( p, z ) Ê Ê Ê Ê p 0.005 · Ï Ï Û Ù Ù Ù Û Ê | z − z c | µ = G · · · Ï Ï Ï Ù Ù Ù Ù Û Û Û Û Û Ê Ê Ï | z − z c | λ Ú Ê Ê Ï Ï Ï Ï Ù Ù Û Û Û · Ê Ê Ï Ï Ï · · · Ê Ê Ù Ï Û 0.001 0.001 0.01 0.1 10 - 4 tension p p z 4.5 3.5 4.0

Recommend


More recommend