mirror mirror on the wall who in this land is fairest of
play

Mirror, mirror, on the wall, who in this land is fairest of all? - PowerPoint PPT Presentation

Mirror, mirror, on the wall, who in this land is fairest of all? Revisiting the extended concentration index G U I D O E R R E YG E R S ( U N I V E R S I T Y O F A N T W E R P ) P H I LI P CLA R K E ( U N I V E R S I T Y O F S Y D N E Y ) TO


  1. Mirror, mirror, on the wall, who in this land is fairest of all? Revisiting the extended concentration index G U I D O E R R E YG E R S ( U N I V E R S I T Y O F A N T W E R P ) P H I LI P CLA R K E ( U N I V E R S I T Y O F S Y D N E Y ) TO M V A N O U R TI ( E R A S M U S U N I V E R S I T Y R O T T E R D A M ) W O R K I N P R O G R E S S ! ! ............. The 2010 IRDES Workshop on Applied Health Economics and Policy Evaluation �� 24-25 June 2010 - Paris - France � www.irdes.fr/Workshop2010 ....

  2. Motivation  How to measure health disparities/inequalities?  Common practice:  borrow indices from income inequality literature  Adapt indices to the bivariate setting  The concentration index and its extended version  often used to evaluate distributional consequences of policies  But is this sufficient?  Health is really different  bounded  mirror condition  What is the meaning of inequality aversion in a bivariate setting?

  3. Outline � Motivation � Revisiting the concentration index � Revisiting the extended concentration index � Revisiting the mirror property � The generalized extended concentration index � A symmetry condition � The symmetric index � Small-sample bias � Empirical illustration

  4. The concentration index revisited (I) � Measuring association between health ( h ) and income rank ( p ∈ [0,1] ) 1 0,9 0,8 0,7 0,6 cumulative proportion of health line of inequality 0,5 concentration curve 1 concentration curve 2 0,4 0,3 0,2 0,1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 cumulative proportion of population ranked by socioeconomic status

  5. The concentration index revisited (II)  a weighted average of health shares! 1 1 ( ) ( ) ( ) ∫  = − C h p , 2 p 1 h p dp     h  0 health weighting normalisation levels function function  The weighting function increases linearly from 1 to -1 and equals zero for p=0.5  The concentration index lies between -1 and 1

  6. The concentration index revisited (III) 1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 -1 w(p,v) -2 v=2 -3 -4 -5 p

  7. Outline � Motivation � Revisiting the concentration index � Revisiting the extended concentration index � Revisiting the mirror property � The generalized extended concentration index � A symmetry condition � The symmetric index � Small-sample bias � Empirical illustration

  8. The extended concentration index revisited (I)  Goal: augment the concentration index with a distributional parameter v > 1 reflecting aversion to inequality (e.g. put less/more emphasis on poorest) 1 1 ( ) ( ) ( )  −  ∫  = − − v 1 C h p v , , 1 v 1 p h p dp   h   0 weighting function  If v=2 , we get the standard concentration index; higher values of v give more negative weight to the poor  Asymmetric bounds: [ 1-v, 1 ]

  9. Revisiting the extended concentration index (II) 1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 -1 v=1 v=1,5 w(p,v) -2 v=2 v=3 v=6 -3 -4 -5 p

  10. Outline � Motivation � Revisiting the concentration index � Revisiting the extended concentration index � Revisiting the m irror property � The generalized extended concentration index � A symmetry condition � The symmetric index � Small-sample bias � Empirical illustration

  11. Revisiting the mirror property (I)  Health is bounded  two points of view:  Positive side: focus on ‘good health’ h(p)  Negative side: focus on ‘ill health’ s(p)=h m ax -h(p)  h(p) ∈ [0,1]  Mirror: health inequality = ill-health inequality  Violated by the concentration index  Only richest is healthy, versus everyone, except richest, is ill  It assumes h m ax = + ∞  Explains ‘stylized facts’ in epidemiology

  12. Hypothetical example 1 0,9 0,8 0,7 0,6 0,5 health ill-health 0,4 0,3 0,2 0,1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 p

  13. Extremer hypothethical example 1 0,9 0,8 0,7 0,6 0,5 health ill-health 0,4 0,3 0,2 0,1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 p

  14. Revisiting the mirror property (II)  The violation carries over to the extended index  Many applications to both health and ill-health  First research question: Can we m odify the extended concentration index such that it satisfies the m irror property?

  15. Outline � Motivation � Revisiting the concentration index � Revisiting the extended concentration index � Revisiting the mirror property � The generalized extended concentration index � A symmetry condition � The symmetric index � Small-sample bias � Empirical illustration

  16. The generalized concentration index  Mirror property holds if normalization function is same for health and ill-health  Solution: make normalization function independent of average health v v 1 − − v 1 v 1 v v ( ) ( ) ( ) ( )   − ∫ = − − v 1 = GC h p v , , 1 v 1 p h p dp hC h p v , ,   − − v 1 v 1  0 normalization function

  17. Outline � Motivation � Revisiting the concentration index � Revisiting the extended concentration index � Revisiting the mirror property � The generalized extended concentration index � A sym m etry condition � The symmetric index � Small-sample bias � Empirical illustration

  18. A symmetry condition  Chances of having high or low health are symmetrically distributed over the rich and the poor  ‘Symmetric’ distribution  no SES health disparities  Only when v=2 , otherwise person with weight 0 ≠ the median  Intuition: No systematic association between income rank and health!!  Second research question: can we m odify the generalized extended concentration index such that it satisfies the sym m etry condition?

  19. Hypothetical symmetric distribution 1 0,9 0,8 0,7 0,6 0,5 health 0,4 0,3 0,2 0,1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 p

  20. Outline � Motivation � Revisiting the concentration index � Revisiting the extended concentration index � Revisiting the mirror property � The generalized extended concentration index � A symmetry condition � The sym m etric index � Small-sample bias � Empirical illustration

  21. The symmetric index (I)  Symmetry condition is satisfied if the weights are symmetric around the median rank 0.5  Explains why v=2 is ok  Solution: normalization function independent of mean health (cf. mirror) and symmetric weighting function { } ( ) α ( ) ( ) ( ) ( ) ( )   ∫ 1 +α α = + α − 2 − 2 1 S h p , , 1 2 p 0.5 2 p 1 h p dp       0     normalization function weighting function  Intuition: Inequality aversion becomes ‘extremes aversion’ for higher v ’s

  22. The symmetric index (III) 2 1,5 1 0,5 α=-0,5 w(p, α ) α=-0,25 0 α=0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 α=0,5 α=2 -0,5 -1 -1,5 -2 p

  23. Outline � Motivation � Revisiting the concentration index � Revisiting the extended concentration index � Revisiting the mirror property � The generalized extended concentration index � A symmetry condition � The symmetric index � Sm all-sam ple bias � Empirical illustration

  24. Small sample bias  For relatively small values of n or relatively high values of v and α , the small-sample bias can be substantial  Bias might be aggravated in case of ties in the income rank  Our solution:  Very straightforward conceptually  Reasonably good performance in Monte Carlo simulations

  25. Outline � Motivation � Revisiting the concentration index � Revisiting the extended concentration index � Revisiting the mirror property � The generalized extended concentration index � A symmetry condition � The symmetric index � Small-sample bias � Em pirical illustration

  26. Summary of empirical results  Demographic Health Surveys for 44 countries  Under 5 mortality; and its mirror 5 year survival  Wealth index constructed using PCA  Country rankings  Summary of findings  Mirror and symmetry are empirically relevant  Small-sample bias and ties are important!

  27. Conclusion  How to incorporate attitudes to inequality into health inequality measurement?  Prerequisite: mirror  Symmetry and not traditional extensions  aversion to extremes matters in a bivariate setting  Small sample bias and empirical relevance of methods

Recommend


More recommend