Minimization of Sensor Activation in Decentralized Fault Diagnosis of Discrete Event Systems Xiang Yin and StΓ©phane Lafortune EECS Department, University of Michigan 54th IEEE CDC, Dec 15-18, 2015, Osaka, Japan 0/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Introduction π‘ 2 3 0 4 π‘ π‘ 1 5 Plant G π π 2 1 π 1 (π‘) π 2 (π‘) Agent 1 πΈ 1 Agent 2 πΈ 2 Coordinator Fault Alarm 1/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Introduction π‘ 2 3 0 4 π‘ π‘ 1 5 Plant G Ξ© 1 Ξ© 2 π π 2 1 π Ξ© 1 (π‘) π Ξ© 2 (π‘) Agent 1 πΈ 1 Agent 2 πΈ 2 Coordinator Fault Alarm 1/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
System Model π» = (π , Ξ£, π, π 0 ) is a deterministic FSA β’ π is the finite set of states; β’ Ξ£ is the finite set of events; β’ π: π Γ Ξ£ β π is the partial transition function; β’ π 0 is the initial state. 2/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
System Model π» = (π , Ξ£, π, π 0 ) is a deterministic FSA β’ π is the finite set of states; β’ Ξ£ is the finite set of events; β’ π: π Γ Ξ£ β π is the partial transition function; β’ π 0 is the initial state. Sensor activation policy Ξ© = (π΅, π) , where π΅ = (π π΅ , Ξ£ π , π π΅ , π 0,π΅ ) and π: π π΅ β 2 Ξ£ π ; - β - Projection π Ξ© : β π» β Ξ£ π π» π‘ State estimate β° Ξ© - , π½ π¦ β 2 π . π΅ π¦ β π π΅ - Observer πππ‘ Ξ© π» = π, Ξ£ π , π, π¦ 0 , and π¦ = π½ π¦ , π΅ π¦ π π π ( 1,3,5,7 , 1) 2 1 3 π π π π π π ( 2,4,7 , 2) 1 2 3 4 5 π π π *π+ *π+ β π π ( 6 , 3) 6 7 π― π π·ππ π΅ π― 2/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Decentralized Diagnosis Problem = Ξ© 1 , Ξ© 2 with Ξ£ π,1 and Ξ£ π,2 β’ Two agents β = *1,2+ , Ξ© β’ A fault event π π β Ξ£ β (βͺ π=1,2 Ξ£ π,π ) Ξ¨ π π = *π‘π π β β π» : π‘ β Ξ£ β + β’ 3/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Decentralized Diagnosis Problem = Ξ© 1 , Ξ© 2 with Ξ£ π,1 and Ξ£ π,2 β’ Two agents β = *1,2+ , Ξ© β’ A fault event π π β Ξ£ β (βͺ π=1,2 Ξ£ π,π ) Ξ¨ π π = *π‘π π β β π» : π‘ β Ξ£ β + β’ β’ K -Codiagnosability: and π π if A live language β π» is said to be πΏ -codiagnosable w.r.t. Ξ© β’ π is the finite set of states; (βπ‘ β Ξ¨(π π ))(βπ’ β β π» /π‘), π’ β₯ πΏ β π·πΈ- β’ πΉ is the finite set of events; where the codiagnosability condition π·πΈ is β’ π: π Γ πΉ β π is the partial transition function; β’ π 0 is the set of initial states. βπ β *1,2+ βπ β β π» π Ξ© π π₯ = π Ξ© π π‘π’ β π π β π . 3/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Problem Formulation Decentralized Minimization Problem β’ Let π» be the system with fault event π π . For each agent π β 1,2 , let Ξ£ π,π β Ξ£ be the set of observable events. Find a sensor activation policy β = ,Ξ© 1 β’ π is the finite set of states; β , Ξ© 2 β - such that Ξ© β’ πΉ is the finite set of events; β C1. β π» is πΏ -codiagnosable w.r.t. Ξ© and e d ; β’ π: π Γ πΉ β π is the partial transition function; β² < Ξ© β β that satisfies (C1). C2. Ξ© is minimal, i.e., there does not exist another Ξ© β’ π 0 is the set of initial states. β² < Ξ© β is defined in terms of set inclusion. β’ Ξ© 4/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Literature Review Decentralized Fault Diagnosis β’ Debouk, R., Lafortune, S., & Teneketzis, D. (2000). Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discrete Event Dynamic Systems, 10(1-2), 33-86. β’ Qiu, W., & Kumar, R. (2006). Decentralized failure diagnosis of discrete event systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 36(2), 384-395. β’ Kumar, R., & Takai, S. (2009). Inference-based ambiguity management in decentralized decision-making: Decentralized diagnosis of discrete-event systems. IEEE Transactions on Automation Science and Engineering, 6(3), 479-491. β’ Moreira, M. V., Jesus, T. C., & Basilio, J. C. (2011). Polynomial time verification of decentralized diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 56(7), 1679-1684. Dynamic Sensor Activation Problem β’ Thorsley, D., & Teneketzis, D. (2007). Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems, 17(4), 531-583. β’ Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers. Fundamenta Informaticae, 88(4), 497-540. β’ Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of opaque systems with static and dynamic masks. Formal Methods in System Design, 40(1), 88-115. β’ Shu, S., Huang, Z., & Lin, F. (2013). Online sensor activation for detectability of discrete event systems. IEEE Transactions on Automation Science and Engineering, 10(2), 457-461. β’ Wang, W., Lafortune, S., Lin, F., & Girard, A. R. (2010). Minimization of dynamic sensor activation in discrete event systems for the purpose of control. IEEE Transactions on Automatic Control, 55(11), 2447-2461. β’ Wang, W., Lafortune, S., Girard, A. R., & Lin, F. (2010). Optimal sensor activation for diagnosing discrete event systems. Automatica, 46(7), 1165-1175. 5/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Agent 1 Agent 2 π π π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Agent 1 Agent 2 π π π π π π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Agent 1 Agent 2 π π π π π π π π π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Agent 1 Agent 2 π π π π π π π π π π π π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Agent 1 Agent 2 π π π π π π π π π π π π π π π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Agent 1 Agent 2 π π π π π π π π π π π π π π π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Agent 1 Agent 2 π π π π π π π π π π π π π π π π π π β β π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 π π π π π π β’ Constrained minimization problem π π π π π π π π π π π π β β π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 π π π π π π β’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton π π π π π π π π π π π π β β π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 π π π π π π β’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton π π π π π π β’ Converge? π π π π π π β β π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 π π π π π π β’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton π π π π π π β’ Converge? - Yes! π π - Monotonicity property π π π π β β π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 π π π π π π β’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton π π π π π π β’ Converge? - Yes! π π - Monotonicity property π π π π β’ Minimal? β β π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 π π π π π π β’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton π π π π π π β’ Converge? - Yes! π π - Monotonicity property π π π π β’ Minimal? - Yes! - Logical optimal (set inclusion) β β π π π π 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015
Recommend
More recommend