minimization of sensor activation in decentralized fault
play

Minimization of Sensor Activation in Decentralized Fault Diagnosis - PowerPoint PPT Presentation

Minimization of Sensor Activation in Decentralized Fault Diagnosis of Discrete Event Systems Xiang Yin and Stphane Lafortune EECS Department, University of Michigan 54th IEEE CDC, Dec 15-18, 2015, Osaka, Japan 0/15 X.Yin & S.Lafortune


  1. Minimization of Sensor Activation in Decentralized Fault Diagnosis of Discrete Event Systems Xiang Yin and StΓ©phane Lafortune EECS Department, University of Michigan 54th IEEE CDC, Dec 15-18, 2015, Osaka, Japan 0/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  2. Introduction 𝑑 2 3 0 4 𝑑 𝑑 1 5 Plant G 𝑄 𝑄 2 1 𝑄 1 (𝑑) 𝑄 2 (𝑑) Agent 1 𝐸 1 Agent 2 𝐸 2 Coordinator Fault Alarm 1/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  3. Introduction 𝑑 2 3 0 4 𝑑 𝑑 1 5 Plant G Ξ© 1 Ξ© 2 𝑄 𝑄 2 1 𝑄 Ξ© 1 (𝑑) 𝑄 Ξ© 2 (𝑑) Agent 1 𝐸 1 Agent 2 𝐸 2 Coordinator Fault Alarm 1/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  4. System Model 𝐻 = (𝑅, Ξ£, πœ€, π‘Ÿ 0 ) is a deterministic FSA β€’ 𝑅 is the finite set of states; β€’ Ξ£ is the finite set of events; β€’ πœ€: 𝑅 Γ— Ξ£ β†’ 𝑅 is the partial transition function; β€’ π‘Ÿ 0 is the initial state. 2/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  5. System Model 𝐻 = (𝑅, Ξ£, πœ€, π‘Ÿ 0 ) is a deterministic FSA β€’ 𝑅 is the finite set of states; β€’ Ξ£ is the finite set of events; β€’ πœ€: 𝑅 Γ— Ξ£ β†’ 𝑅 is the partial transition function; β€’ π‘Ÿ 0 is the initial state. Sensor activation policy Ξ© = (𝐡, 𝑀) , where 𝐡 = (𝑅 𝐡 , Ξ£ 𝑝 , πœ€ 𝐡 , π‘Ÿ 0,𝐡 ) and 𝑀: 𝑅 𝐡 β†’ 2 Ξ£ 𝑝 ; - βˆ— - Projection 𝑄 Ξ© : β„’ 𝐻 β†’ Ξ£ 𝑝 𝐻 𝑑 State estimate β„° Ξ© - , 𝐽 𝑦 ∈ 2 𝑅 . 𝐡 𝑦 ∈ 𝑅 𝐡 - Observer 𝑃𝑐𝑑 Ξ© 𝐻 = π‘Œ, Ξ£ 𝑝 , 𝑔, 𝑦 0 , and 𝑦 = 𝐽 𝑦 , 𝐡 𝑦 𝑝 𝑔 𝑝 ( 1,3,5,7 , 1) 2 1 3 𝑝 𝑐 𝑔 𝑝 𝑏 𝑏 ( 2,4,7 , 2) 1 2 3 4 5 𝑏 𝑏 𝑐 *𝑝+ *𝑏+ βˆ… 𝑝 𝑝 ( 6 , 3) 6 7 𝑯 𝛁 𝑷𝒄𝒕 𝜡 𝑯 2/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  6. Decentralized Diagnosis Problem = Ξ© 1 , Ξ© 2 with Ξ£ 𝑝,1 and Ξ£ 𝑝,2 β€’ Two agents ℐ = *1,2+ , Ξ© β€’ A fault event 𝑓 𝑒 ∈ Ξ£ βˆ– (βˆͺ 𝑗=1,2 Ξ£ 𝑝,𝑗 ) Ξ¨ 𝑓 𝑒 = *𝑑𝑓 𝑒 ∈ β„’ 𝐻 : 𝑑 ∈ Ξ£ βˆ— + β€’ 3/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  7. Decentralized Diagnosis Problem = Ξ© 1 , Ξ© 2 with Ξ£ 𝑝,1 and Ξ£ 𝑝,2 β€’ Two agents ℐ = *1,2+ , Ξ© β€’ A fault event 𝑓 𝑒 ∈ Ξ£ βˆ– (βˆͺ 𝑗=1,2 Ξ£ 𝑝,𝑗 ) Ξ¨ 𝑓 𝑒 = *𝑑𝑓 𝑒 ∈ β„’ 𝐻 : 𝑑 ∈ Ξ£ βˆ— + β€’ β€’ K -Codiagnosability: and 𝑓 𝑒 if A live language β„’ 𝐻 is said to be 𝐿 -codiagnosable w.r.t. Ξ© β€’ π‘Œ is the finite set of states; (βˆ€π‘‘ ∈ Ξ¨(𝑓 𝑒 ))(βˆ€π‘’ ∈ β„’ 𝐻 /𝑑), 𝑒 β‰₯ 𝐿 β‡’ 𝐷𝐸- β€’ 𝐹 is the finite set of events; where the codiagnosability condition 𝐷𝐸 is β€’ 𝑔: π‘Œ Γ— 𝐹 β†’ π‘Œ is the partial transition function; β€’ π‘Œ 0 is the set of initial states. βˆƒπ‘— ∈ *1,2+ βˆ€πœ• ∈ β„’ 𝐻 𝑄 Ξ© 𝑗 π‘₯ = 𝑄 Ξ© 𝑗 𝑑𝑒 β‡’ 𝑓 𝑒 ∈ πœ• . 3/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  8. Problem Formulation Decentralized Minimization Problem β€’ Let 𝐻 be the system with fault event 𝑓 𝑒 . For each agent 𝑗 ∈ 1,2 , let Ξ£ 𝑝,𝑗 βŠ† Ξ£ be the set of observable events. Find a sensor activation policy βˆ— = ,Ξ© 1 β€’ π‘Œ is the finite set of states; βˆ— , Ξ© 2 βˆ— - such that Ξ© β€’ 𝐹 is the finite set of events; βˆ— C1. β„’ 𝐻 is 𝐿 -codiagnosable w.r.t. Ξ© and e d ; β€’ 𝑔: π‘Œ Γ— 𝐹 β†’ π‘Œ is the partial transition function; β€² < Ξ© βˆ— βˆ— that satisfies (C1). C2. Ξ© is minimal, i.e., there does not exist another Ξ© β€’ π‘Œ 0 is the set of initial states. β€² < Ξ© βˆ— is defined in terms of set inclusion. β€’ Ξ© 4/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  9. Literature Review Decentralized Fault Diagnosis β€’ Debouk, R., Lafortune, S., & Teneketzis, D. (2000). Coordinated decentralized protocols for failure diagnosis of discrete event systems. Discrete Event Dynamic Systems, 10(1-2), 33-86. β€’ Qiu, W., & Kumar, R. (2006). Decentralized failure diagnosis of discrete event systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 36(2), 384-395. β€’ Kumar, R., & Takai, S. (2009). Inference-based ambiguity management in decentralized decision-making: Decentralized diagnosis of discrete-event systems. IEEE Transactions on Automation Science and Engineering, 6(3), 479-491. β€’ Moreira, M. V., Jesus, T. C., & Basilio, J. C. (2011). Polynomial time verification of decentralized diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 56(7), 1679-1684. Dynamic Sensor Activation Problem β€’ Thorsley, D., & Teneketzis, D. (2007). Active acquisition of information for diagnosis and supervisory control of discrete event systems. Discrete Event Dynamic Systems, 17(4), 531-583. β€’ Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers. Fundamenta Informaticae, 88(4), 497-540. β€’ Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of opaque systems with static and dynamic masks. Formal Methods in System Design, 40(1), 88-115. β€’ Shu, S., Huang, Z., & Lin, F. (2013). Online sensor activation for detectability of discrete event systems. IEEE Transactions on Automation Science and Engineering, 10(2), 457-461. β€’ Wang, W., Lafortune, S., Lin, F., & Girard, A. R. (2010). Minimization of dynamic sensor activation in discrete event systems for the purpose of control. IEEE Transactions on Automatic Control, 55(11), 2447-2461. β€’ Wang, W., Lafortune, S., Girard, A. R., & Lin, F. (2010). Optimal sensor activation for diagnosing discrete event systems. Automatica, 46(7), 1165-1175. 5/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  10. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  11. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝛁 𝟐 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  12. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  13. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  14. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  15. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  16. Solution Overview Person by Person Approach Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  17. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  18. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  19. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ β€’ Converge? 𝟐 𝟐 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  20. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ β€’ Converge? - Yes! 𝟐 𝟐 - Monotonicity property 𝛁 𝟐 𝛁 πŸ‘ βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  21. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ β€’ Converge? - Yes! 𝟐 𝟐 - Monotonicity property 𝛁 𝟐 𝛁 πŸ‘ β€’ Minimal? βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

  22. Solution Overview Person by Person Approach Challenges & Solutions Agent 1 Agent 2 𝟏 𝟏 𝛁 πŸ‘ 𝛁 𝟐 β€’ Constrained minimization problem - Full centralized problem - Generalized state-partition automaton 𝟏 𝟐 𝛁 𝟐 𝛁 πŸ‘ β€’ Converge? - Yes! 𝟐 𝟐 - Monotonicity property 𝛁 𝟐 𝛁 πŸ‘ β€’ Minimal? - Yes! - Logical optimal (set inclusion) βˆ— βˆ— 𝛁 𝟐 𝛁 πŸ‘ 6/15 X.Yin & S.Lafortune (UMich) CDC 2015 Dec 2015

Recommend


More recommend