MIGA AND ELGAR: NEW PERSPECTIVES FOR LOW FREQUENCY GRAVITATIONAL WAVE OBSERVATION USING ATOM INTERFEROMETRY MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 1
MIGA Project A new large instrument combining matter- wave and laser interferometry • Gravitational wave physics • Demonstrator for future sub-Hz ground based GW detectors • Geoscience • Gravity sensitivity of 10 -10 g/Sqrt(Hz) @ 2Hz • Gradient sensitivity of 10 -13 s -2 /Sqrt(Hz) @ 2Hz: geology, hydrogeology… A Large research infrastructure hosted in a low noise laboratory • Two 200 m horizontal optical cavity coupled with 3 AI • Possible evolutions towards 2D or 3D instrument on Nice site Toulon MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 2
Paris : Physics Design of a large-scale instrument Metrology with interdisciplinary applications Geophys. and based on recent advances in atomic atomic Astrophys. interferometry: MIGA is the first of a Rustrel : new generation of detectors both built sensors Interféromètres underground and using quantum Geophysic m a n i p u l a t i o n o f a t o m s f o r s and geosciences, seismology and Bordeaux : Instrument fundamental physics. lasers, operation C o o r d i n a t i o n o f e x p e r t s i n instrument fundamental physics, geosciences development and astronomy. , prototype A first generation of research facility and enabling high-precision tests to be maintenance carried out by different communities. An important step towards a low- frequency gravitational strain sensor with an interest in the detection of gravitational waves and also � 3 geophysics. MIGA, GDR Ondes Gravitationnelles, 20/06/2018
Can we extend the frequency band of state-of-the-art GW detectors? Sesana, arxiv.org/1602.06951 State-of-the-art GW detectors sense the ultimate evolution phase of binary systems • A transient of a few hundreds of ms which corresponds to system coalescence With low frequency detectors (f<1Hz) • Observation of the same sources on quasi continuous timescales A new astronomy is possible with low frequency detectors MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 4
Can we extend the frequency band of state-of-the-art GW detectors? • New observables • New sources Space Ground Underground � 5 MIGA, GDR Ondes Gravitationnelles, 20/06/2018
How to extend the frequency band of state-of-the-art GW detectors? Limitations for f<10 Hz: • Radiation pressure noise • Imperfections of Mirror suspensions • « Gravity gradient » noise « Advanced LIGO » Sensitivity « Gravity Gradient » noise Fluctuations of the Earth gravity field MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 6
Cold atoms for GW detection ? Let’s use free falling atoms as “test masses” instead of mirrors δϕ las ∝ khL L Enable to overcome: • Limitations related to suspension systems. • Radiation pressure noise. Sensitivity to Gravity Gradient Noise is the same ! Suspended mirors Free falling atoms MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 7
Networks of AIs for Gravity Gradient Noise cancellation Example of the MIGA Geometry X i X j ∝ kh ( X i − X j ) • Effet GW Δφ ati - Δφ atj Gravity gradient ∝ 2 kT 2 a ( X i ) − a ( X j ) • ⎡ ⎤ ⎣ ⎦ Discrimination between GW effects and gravity gradients using the spatial resolution of the antenna • Low frequency (10 -2 -10 Hz) GW detection limited by detection noise • Measures of the local gravity field = Geoscience MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 8
Networks of AIs for Gravity Gradient Noise cancellation Use of AI offers possibility to spatially resolve gravity ➡ GW have long wavelength while GG have short characteristic length of variation (1 m – few km) ➡ Correlations between distant sensors provide information on the GG noise and allows to discriminate it from the GW signal correlations GW signal Inertial signal X � 9 MIGA, GDR Ondes Gravitationnelles, 20/06/2018
Networks of AIs for Gravity Gradient Noise cancellation Strain sensitivity ➡ Shot noise ➡ Seismic noise ➡ W. Chaibi, et al. Phys. Rev. D 93, 021101(R), 2016 MIGA, GDR Ondes Gravitationnelles, 20/06/2018
Next generation Matter-wave antenna can reach sensitivity Dense arrays of Atom Interferometers could be used as future GW detectors L tot =32 km • • N=80 gradiometers • baseline L = 16 km L tot • Gravitational Wave signal can be extracted using a spatial averaging method • N Correlated gradiometers enable to average the GGN over several realizations N H N ( t ) = 1 ∑ ψ i ( t ) N i = 1 The geometry of the detector ( δ ,L) is chosen with respect to the spatial correlation • properties of the GGN. MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 11
GGN reduction with an AI network • Gain of about factor 10 in the 100 mHz 1 Hz band • Space for improvement using all spatial information of the network (use different baseline L in the numerical treatment) MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 12
Tools for next generation Matter-wave antenna Measurement noise 100 times lower than the quantum- Stability enhancement by joint phase projection limit using entangled atoms measurements in a single cold atomic Nature 529, 505–508 fountain Phys. Rev. A 90, 063633 Phase Locking a Clock Oscillator to a Coherent Quantum superposition at the half-metre scale Atomic Ensemble Phys. Rev. X 5, 021011 Nature 528, 530–533 � 13 MIGA, GDR Ondes Gravitationnelles, 20/06/2018
Underground site (LSBB) for MIGA MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 14
MIGA at the LSBB site 200 m • A dismissed military facility • Former command centre for nuclear force • Infrastructure works will start end 2017 • MIGA installation: mid 2019 MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 15
The MIGA Instrument Cavité ultra-stable 200 m couplée à 3 IA 200 m � 16 MIGA, GDR Ondes Gravitationnelles, 20/06/2018
MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 17
MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 18
MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 19
LSBB, a site of geological interest MIGA: Access to gravity gradient & higher orders, long term fluctuations MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 20
LSBB, a low noise site for MIGA Environmental noise may prevent to reach detection noise (quantum noise) easily. Usual suspects: seismic and magnetic noise − 4 10 RMS noise on AI − 5 Tipical lab conditions (filtered) 10 Acceleration m.s − 2.Hz − 1/2 measurements induced by seismic noise: − 6 10 σ φ =640 mrad σ φ =60 mrad − 7 10 − 8 10 − 9 10 LSBB − 10 10 − 2 − 1 0 1 2 10 10 10 10 10 Frequency (Hz) Underground operation enables AI to reach optimal performances ≈ 5 10 -10 g = 0.5 µGal See T. Farah, et al., Gyroscopy Navig. 5 , 266 (2014). MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 21
Collaboration with TOTAL to predict escalated site Nor 1% d 2% GW 2% Core analysis and wall imaging Geological modeling Carbonated reservoir prediction Environment Core area 240 m - C1-C3 MIGA hydro-geological analysis around Tank exploration MIGA Geotechnical anticipation of drilling Seismic models � 22 MIGA, GDR Ondes Gravitationnelles, 20/06/2018
Projection of GGN for MIGA Sources Gravity Gradient noise on detector site (10 -2 -10 Hz) • Seismic GGN • Atmospheric GGN • Other : geophysical properties (hydrology), linked to human activity Seismic GGN for MIGA at LSBB • STS-2 sensor MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 23
Projection for seismic noise MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 24
Projection for seismic noise MIGA (current design) MIGA (improved design) S/N x 10, LMT 100 hk MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 25
Projection for infrasound noise MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 26
Projection for infrasound noise MIGA (current design) MIGA (improved design) S/N x 10, LMT 100 hk MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 27
MIGA status and perspectives MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 28
The MIGA antenna ϕ ( X 1 ) ϕ ( X 2 ) ϕ ( X 3 ) s s s π π 30 cm π /2 ≈ 100m ≈ 100m � 29 MIGA, GDR Ondes Gravitationnelles, 20/06/2018
Test and callibration set-ups MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 30
Accelerometer set up MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 31
Accelerometer set up MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 32
Accelerometer set up MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 33
MIGA Status 2012 2014 – First design of the instrument 2016 – Publication (PRD) of the Newtonian Noise suppression 2013 technique 2015 – Gravimeter 2014 2015 2016 2017 2013 - Project manager 2017 – Gallery hired from VIRGO preparations 2017 – 3 sensors ready 2018 2018 - prototype 2015 – First 2019 2019 suspension and 2016 – GW discovery Instrument online sensor prototype MIGA, GDR Ondes Gravitationnelles, 20/06/2018 � 34
Recommend
More recommend